Browse Topic: Wings

Items (1,203)
The objective of the paper is to enhance the aerodynamic performance of an aircraft wing using the injection–suction method. This method utilizes simulation techniques based on the Reynolds-averaged Navier–Stokes (RANS) equations with a k-epsilon turbulence model solver. The results of the simulations demonstrate a significant improvement in the wing’s performance, with a 33% increase in the stalling angle and a 10% enhancement in the lift coefficient compared to the baseline airfoil. The drag value is decreasing up to 40% depending on the angle of attack. The novelty of this proposed method was in the strategic placement of injection and suction. Injection is applied over the top airfoil at the separation point, while suction is applied at the midsection of the bottom airfoil. This configuration optimizes the aerodynamic flow over the wing, leading to improved performance metrics of lift coefficient and stall angle. This concept has potential applications in subsonic fixed-wing
Rameshbhai, Patel AnkitkumarPatidar, Vijay KumarBalaji, K.
A study published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane’s main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don’t have to work as hard to move the plane, so it burns less fuel
The mystery of how futuristic aircraft embedded engines, featuring an energy-conserving arrangement, make noise has been solved by researchers at the University of Bristol. University of Bristol, Bristol, UK A study published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane's main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don't have to work as hard to move the plane, so it burns less fuel. The research, led by Dr. Feroz Ahmed from Bristol's School of Civil, Aerospace and Design Engineering under the supervision of Professor Mahdi Azarpeyvand, utilized the University National Aeroacoustic Wind Tunnel Facility. They were able to identify distinct noise sources originating
Dimensional optimization has always been a time-consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. This study aims to reduce the time period taken to finalize the design parameter for the same. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the CL/CD ratio. A high value of CL indicates a significant component of
Hujare, Pravin PHujare, Deepak PChoudhary, PrateekSakat, AbhishekKaranjkar, Rushil
This document presents a study on the design and simulation of a high-lift airfoil intended for usage in multielement setups such as the wings present on open-wheel race cars. With the advancement of open-wheel race car aerodynamics, the design of existing high-lift airfoils has been altered to create a more useful and practical general profile. Adjoint optimization tools in CFD (ANSYS Fluent) were employed to increase the airfoil’s performance beyond existing high-lift profiles (Selig S1223). Improvements of up to 20% with a CL of 2.4 were recorded. To further evaluate performance, the airfoil was made the basis of a full three-dimensional aerodynamics package design for an open-wheel Formula Student car. CFD simulations were carried out on the same and revealed performance characteristics of the airfoil in a more practical application. These CFD simulations were calibrated with experimental values from coast-down testing data with an accuracy of 8
Karthikeyan, Prthik NandhanRadhakrishnan, Jayakrishnan
In the process of designing the aerodynamic kit for Formula SAE racing cars, there is a lot of repetitive work and low efficiency in optimizing parameters such as wing angle of attack and chord length. Moreover, the optimization of these parameters in past designs heavily relied on design experience and it's difficult to achieve the optimal solution through theoretical calculations. By establishing a parametric model in CAD software and integrating it with CFD software, we can automatically modify model parameters, run a large number of simulations, and analyze the simulation results using statistical methods. After multiple iterations, we achieve fully automatic parameter optimization and obtain higher negative lift. At the same time, the simulation process is optimized, and simulations are run based on GPUs, resulting in a significant increase in simulation speed compared to the original. The results show that automated optimization saves a lot of manpower costs, and compared to
Chen, Yanjun
When the aircraft towing operations are carried out in narrow areas such as the hangars or parking aprons, it has a high safety risk for aircraft that the wingtips may collide with the surrounding aircraft or the airport facility. A real-time trajectory prediction method for the towbarless aircraft taxiing system (TLATS) is proposed to evaluate the collision risk based on image recognition. The Yolov7 module is utilized to detect objects and extract the corresponding features. By obtaining information about the configuration of the airplane wing and obstacles in a narrow region, a Long Short-Term Memory (LSTM) encoder-decoder model is utilized to predict future motion trends. In addition, a video dataset containing the motions of various airplane wings in real traction scenarios is constructed for training and testing. Compared with the conventional methods, the proposed method combines image recognition and trajectory prediction methods to describe the relative positional relationship
Zhu, HengjiaXu, YitongXu, ZiShuoJiYuan, LiuZhang, Wei
Aircraft moving at transonic speeds (i.e., ~0.7 to 0.85 Mach - or near the speed of sound) experience transonic wing flutter. Engineers have traditionally relied on experimental or computational methods to understand wing flutter for the design process. Modeling wing flutter using the customary computational methods requires tens of hours of simulations on a supercomputer that is costly to buy or rent. Having a method to model wing flutter aerodynamics without requiring supercomputer use would (a) increase the efficiency and decrease the cost of aircraft wing design and (b) enable real-time wing-flutter modeling to aid in-flight aircraft operation and control
A tandem aircraft configuration has two wings placed one behind the other longitudinally, with no dedicated horizontal stabilizer. Since there are two wings, high lift is obtained but also at the cost of additional structural weight and drag. In this article, a methodology is proposed to design a tandem aircraft configuration and depict the design process of the radio-controlled model. Flight test is conducted with the model to verify the stability and predicted performance. Aerodynamic optimization is conducted by using computational fluid dynamics to understand the effects of downwash from the front wing to the aft wing. In the end, a conventional aircraft is conceptually designed, which uses the same power plant configuration and the predicted performance is obtained. The predicted performance results of the tandem aircraft and the conventional aircraft are compared and the results are obtained. Compared to conventional aircraft tandem wing configuration found 13.5% shorter wingspan
Rudresh, M.Sudhagara Rajan, S.Muthiya, Solomon JenorisNikhil, T.Ganguli, NayanNikhil, N.Nagasharan, S.N.
A research team led by Tao Sun, Associate Professor, University of Virginia, has made new discoveries that can expand additive manufacturing in industries that rely on strong metal parts, including aerospace. The research addresses the issue of detecting the formation of keyhole pores, a major defect in laser powder bed fusion (LPBF), a common additive manufacturing technique introduced in the 1990s
The term “3 inch ice shapes” has assumed numerous definitions throughout the years. At times it has been used to generally characterize large glaze ice accretions on the major aerodynamic surfaces (wing, horizontal stabilizer, vertical stabilizer) for evaluating aerodynamic performance and handling qualities after a prolonged icing encounter. It has also been used as a more direct criterion while determining or enforcing sectional ice shape characteristics such as the maximum pinnacle height. It is the authors’ observation that over the years, the interpretation and application of this term has evolved and is now broadly misunderstood. Compounding the situation is, at present, a seemingly contradictory set of guidance among (and even within) the various international regulatory agencies resulting in an ambiguous set of expectations for design and certification specialists. The focus of this paper is to provide a more complete and accurate historical accounting of “3 inch ice shapes
Leopold, DaveMalone, AdamBosetti, CrisMacomber, JohnSlim, Rami
Diagonalized alternating-direction implicit (DADI) method is implemented in the Eulerian hyperbolic droplet solver, ICEPAC, for efficient high-order accurate analysis of aircraft icing. Detailed techniques for implementing the DADI method considering hyperbolicity characteristics are discussed. For the Eulerian droplet equation system to be strictly hyperbolic, additional source terms regarding artificial droplet pressure are included. Validations of the present implicit solver are conducted using two- and three-dimensional steady benchmark tests: NACA0012 airfoil, NACA23012 airfoil, and a swept wing. Also, the oscillating airfoil SC2110 case was analyzed to verify the robustness and efficiency of the proposed solver. In addition, the computational cost of the current implicit solver is considerably lower than that of the explicit multi-stage solver
Kim, YounghyoHong, YoonpyoShon, SoonhoYee, Kwanjung
This paper studies the level of confidence and applicability of CFD simulations using steady-state Reynolds-Averaged Navier-Stokes (RANS) in predicting aerodynamic performance losses on swept-wings due to contamination with ice accreted in-flight. The wing geometry selected for the study is the 65%-scale Common Research Model (CRM65) main wing, for which NASA Glenn Research Center’s Icing Research Tunnel has generated experimental ice shapes for the inboard, mid-span, and outboard sections. The reproductions at various levels of fidelity from detailed 3D scans of these ice shapes have been used in recent aerodynamic testing at the Office National d’Etudes et Recherches Aérospatiales (ONERA) and Wichita State University (WSU) wind tunnels. The ONERA tests were at higher Reynolds number range in the order of 10 million, while the WSU tests were in the order of 1 million. RANS CFD results for the lower-Reynolds 8.9% WSU model up to α = 10° were previously generated by University of
Ozcer, IsikPueyo, AlbertoMenter, FlorianHafid, SabrinaYang, Hong
Thermal ice protection systems (IPS) are used extensively in aeronautics. They are tailored according to the aircraft characteristics or flight envelope and can be used in different modes, anti-icing to avoid ice accretion or de-icing to remove the ice once accreted. A relevant issue by this application is the runback icing, caused by the downstream flow of melted or running water to unprotected areas, where activation is not possible in terms of energy consumption. Passive systems are being explored to complement or replace active systems, although, up to now, solutions have not been reported with the required performance for real-life applications. One of the most commonly reported anti-icing strategy relays on superhydrophobicity, i.e., it is based on the water roll-off capacity of Cassie-Baxter superhydrophobic surfaces (CB-SHP). Precisely, running wet phenomena, where liquid water is flowing on the surface, could be an appropiate application field for this type of materials
Mora, JulioGarcía, PalomaCarreño, FranciscoMontes, LauraLópez-Santos, CarmenRico, VictorBorras, AnaRedondo, FranciscoGonzález-Elipe, Agustín R.Agüero, Alina
Cold soaked fuel frost (CSFF) is frost that forms on aircraft wing surfaces following a flight because of cold excess fuel remaining in integrated fuel tanks. Previous investigations by Zhang et al. (2021a) and Zhang et al. (2021b) have focused on experimental measurements and correlation development for frost observed using a small frost wind tunnel employing a thermo-electric cooler to impose a surface temperature for a range of environmental conditions. To model the CSFF approach in more detail, an experimental facility was developed and described by McClain et al. (2020) using a thermal model of an integrated wing fuel tank placed inside of a climatic chamber. In this paper, experimental measurements of CSFF are presented using two aluminum wing skins. One of the skins was created using an aluminum rib structure, and the other skin was created without the rib. An automated, photogrammetric approach was used to characterize the roughness evolution on each surface when exposed to a
McClain, StephenO'Neal, DennisForslund, NicholasAhmed, Salah Uddin
This paper provides information on the comparison of numerical simulations with experimental data for an electrothermal ice protection system with a focus on Appendix O [1] Freezing Drizzle (FZDZ) and Freezing Rain (FZRA) conditions. The experimental data is based on a test campaign with a 2D NACA23012 wing section in the RTA Icing Wind Tunnel in Vienna. 22 icing runs (all either unheated or in anti-ice mode) were performed in total and all residual ice shapes were documented by means of high-resolution 3D scanning. Unheated FZDZ and FZRA reference as well as heated cases with different heater configurations are presented. The experimental results are compared to numerical predictions from two different icing codes from AeroTex GmbH (ATX) and the University of Applied Sciences FH JOANNEUM (FHJ) in Graz. The current capabilities of the codes were assessed in detail and regions for improvement were identified. Overall, the codes were able to predict the ice shapes of both the unheated
Breitfuß, WolfgangMoser, RichardHassler, WolfgangFerschitz, HermannNeubauer, ThomasPuffing, ReinhardDiebald, StefanSchweighart, Simon
This paper introduces the Lagrangian particle tracking technology readily available in Ansys Fluent in the in-flight icing simulation workflow, which normally uses the Eulerian approach for droplet flows. The Lagrangian solver is incorporated in the Fluent Icing workspace which is to become the next-gen in-flight icing simulation tool provided by Ansys. Lagrangian tracking will eventually be used for SLD and ice crystal rebound and re-impingement calculations in the Ansys workflow. Here we introduce some preliminary results with the current state of its implementation as of Fluent Icing release 2023R2. Example cases include several selections from the 1st Ice prediction workshop with experimental comparisons as well as results obtained earlier with the Eulerian droplet solution strategy. Collection efficiency comparisons on clean geometries show good agreement between Eulerian and Lagrangian methods when the particle seeds are in the millions range. Shadow zones are resolved with more
Moula, GuillaumeOzcer, Isik
This paper presents a novel fully-automatic remeshing procedure, based on the level-set method and Delaunay triangulation, to model three-dimensional boundary problems and generate a new conformal body-fitted mesh. The proposed methodology is applied to long-term in-flight ice accretion, which is characterized by the formation of extremely irregular ice shapes. Since ice accretion is coupled with the aerodynamic flow field, a multi-step procedure is implemented. The total icing exposure time is subdivided into smaller time steps, and at each time step a three-dimensional body-fitted mesh, suitable for the computation of the aerodynamic flow field around the updated geometry, is generated automatically. The methodology proposed can effectively deal with front intersections, as shown with a manufactured example. Numerical simulations over a NACA0012 swept wing both in rime and glaze conditions are compared with the experimentally measured ice shapes from the 1st AIAA Ice Prediction
Donizetti, AlessandroRausa, AndreaBellosta, TommasoRe, BarbaraGuardone, Alberto
The present paper showcases the predicting ability of an in-house 2D/ Quasi-3D steady state Ice Crystal Accretion Tool (ICAT) applicable for both heated and un-heated surfaces. The previously existing code for unheated surfaces, has been extended to heated scenarios with the inclusion of: 1) coupling with solid conduction model 2) inclusion of advanced models for crystal melting, water film modeling, sticking and erosion. The results obtained from ICAT are verified against the experimental results of heated NACA0012 airfoil, conducted in the icing wind tunnel of TU Braunschweig as part of MUSIC-haic project. ICAT predictions are found to be well in agreement with the ICI physics, which is proven with the various parameters addressed in this paper, such as tunnel temperature, ice crystal temperature, inlet melt ratio, heating power, etc
Roychowdhury, SomasreePoornima, RajaniBokade, VilasJebauer, SteffenVanacore, PaoloMalik, Yasir A.
A research program was conducted to evaluate the effectiveness of icing tunnel hybrid model design. A hybrid design is where the full-scale leading edge of a wing section is maintained only to a certain percentage of the local chord, while the aft section of the model is redesigned into a shortened or truncated planform. An initial study was conducted in 2020 where the ice shape geometries on a full-chord length version of the swept CRM65 wing model were compared to those from the hybrid version of CRM65 that were obtained in the NASA Icing Research Tunnel in 2015. The results were reported in a 2021 paper. For most test conditions, the overall size and shape of the ice shapes compared well. However, the ice shapes from the full-chord model were generally slightly smaller than those from the hybrid model. A follow-on test was conducted in 2022 and obtained ice shapes on both full-chord and hybrid wing models during the same test campaign to eliminate the differences in the tunnel spray
Lee, SamBroeren, Andy
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant. Another series of tests explored cloud MVD
Broeren, AndyLee, SamTsao, Jen-Ching
Aircraft icing is an important subject for investigation due to its critical effects on flight performance. Ice accretion analysis is commonly carried out using computational tools, from which parameters such as the mean ice shape and roughness characteristics can be obtained, as these parameters have a strong effect on the physics of aerodynamics and ice accretion. Hence, the accurate digitization of a generated ice shape through ice measurement techniques is of crucial importance. This study aimed to validate the use of photogrammetry for measurement of ice geometries and roughness on UAV airfoils, by comparing it with the cast-and-mold method. Two test cases, one mixed and second rime ice, were analyzed, each case with three subcases varying in the number of photographs used. For test case 1, mixed ice, photogrammetry method resulted in an underestimation of mean ice height by 0.5 mm in the smooth zone and overestimation by 0.2 mm and 0.6 mm on the pressure and suction sides
Baghel, Anadika PaulSotomayor-Zakharov, DenisKnop, InkenOrtwein, Hans-Peter
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included. The mockup was investigated in the Icing Wind Tunnel of Rail Tec Arsenal in Vienna, Austria under various Appendix C and Appendix O icing conditions with and without activated
Puffing, ReinhardNeubauer, ThomasMoser, RichardHassler, WolfgangSchweighart, SimonFerschitz, HermannDiebald, StefanBreitfuss, WolfgangKozomara, David
Under the EU Clean Sky 2 research project InSPIRe – Innovative Systems to Prevent Ice on Regional Aircraft, numerical and experimental studies have been performed to investigate the potential to minimise the electrical power required for wing ice protection on a regional aircraft wing. In a standard electrothermal de-ice protection scheme there is a parting strip heater which runs along the full spanwise protected extent and is permanently powered. This splits the ice formation on the leading edge into an upper and lower region, which makes it easier to shed. However, the parting strip is relatively energy intensive and contributes a significant portion of the overall power demand. Developing a system which is able to provide the desired ice protection function without a parting strip would therefore offer a substantial power saving. The great difficulty with such a system is in ensuring that acceptable ice shedding occurs. Through numerical design studies a heater layout and power
Moser, RichardRoberts, IanPlassnegger, BerndKuehnelt, HelmutAnich, MaxNugnes, Giuseppina Giusy
Icing related problems on aero-components have been recognized since the beginning of modern aviation. Various icing incidents occurred due to severe degradation of aerodynamic performance, and engine rollbacks. As in-flight icing can occur over a broad range of atmospheric and flight conditions, design of effective ice protection mechanisms on aero-components is essential. Computational simulations are a significant part of designing these mechanisms, therefore accurate prediction of droplet collection efficiency and accreted ice shapes are vital. In the current study, continued efforts to improve a computational in-flight icing prediction tool are introduced together with obtained results. The emphasis in this study is on the recent improvements introduced to flow-field and droplet trajectory calculation modules. The flow-field predictions were previously managed by Hess-Smith panel method and this module is fortified with inclusion of an open-source Navier-Stokes code. Droplet
Görgülü, İlhanÖzgen, Serkan
This paper proposes an extension to curved surfaces of a design method of piezoelectric ice protection systems established for planar surfaces. The method is based on a finite element analysis which enables the fast computation of the resonant modes of interest to de-ice surfaces as leading edges. The performance of the modes of interest is assessed according to their deicing capacity estimated from the electro-mechanical coupling between the electric charge of the piezoelectric actuators and the strain energy in the structure. The method is illustrated on a NACA 0024 airfoil. Several experimental tests are conducted in an icing wind tunnel to verify the numerical predictions of the ice shedding and the operation of the system
Palanque, ValerianPothin, JasonBudinger, MarcPommier-Budinger, ValérieYaich, Ahmed
The performance of low-adhesion surfaces in a realistic, in-flight icing environment with supercooled liquid droplets is evaluated using a NACA 0018 airfoil in the National Research Council of Canada Altitude Icing Wind Tunnel. This project was completed in collaboration with McGill University, the University of Toronto and the NRC Aerospace Manufacturing Technologies Centre in March 2022. Each collaborator used significantly different methods to produce low-adhesion surface treatments. The goal of the research program was to demonstrate if the low-adhesion surfaces reduced the energy required to de-ice or anti-ice an airfoil in an in-flight icing environment. Each collaborator had been developing their own low-adhesion surfaces, using bench tests in cold rooms and a spin rig in the wind tunnel to evaluate their performance. The most promising surface treatments were selected for testing on the airfoil. The de-icing and anti-icing performance of the low-adhesion surfaces was compared
Clark, CatherineKietzig, Anne-MarieGolovin, KevinSong, Naiheng
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved
Gallia, MariachiaraRausa, AndreaMartuffo, AlessandroGuardone, Alberto
Predicting the aerodynamic performance of an aircraft in icing conditions is critical as failures in an aircraft’s ice protection system can compromise flight safety. Aerodynamic effects of icing have typically relied on RANS modeling, which usually struggles to predict stall behavior, including those induced by surface roughness. Encouraged by recent studies using LES that demonstrate the ability to predict stall characteristics on full aircraft with smooth wings at an affordable cost [1], this study seeks to apply this methodology to icing conditions. Measurements of lift, drag, and pitching moments of a NACA23012 airfoil under clean and iced conditions are collected at Re = 1.8M. Using laser scanned, detailed representations of the icing geometries, LES calculations are conducted to compare integrated loads against experimental measurements in both clean and iced conditions at various angles of attack through the onset of stall [2]. This study will explore several critical ice
Bornhoft, BrettJain, SuhasGoc, KonradBose, SanjeebMoin, Parviz
We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient. A robust optimization formulation was also considered aiming to
Gallia, MariachiaraGuardone, AlbertoCongedo, Pietro Marco
Even going as far back as bird-like dinosaurs, ornithological animals have always benefited from folding their wings during upstroke. This makes birds an interesting inspiration for the development of drones. However, determining which flapping strategy is best requires aerodynamic studies. So, a Swedish-Swiss research team has constructed a robotic wing that can flap like a bird
In view of the structural accidental events in the ongoing airworthiness stage of civil aircraft, it is necessary to conduct a risk assessment to ensure that the risk level is within an acceptable range. However, the existing models of risk assessment have not effectively dealt with the risk of accidental structural damage due to random failure. This article focuses on probabilistic risk assessment using the Transport Airplane Risk Assessment Methodology (TARAM) of accidental structural damage of civil aircraft. Based on the TARAM and probability reliability integral, a refined failure frequency probability calculation model is established to elaborate on composite structure failure frequency. A case study is analyzed for the outer wing plane of an aircraft having impact damage of composite materials. Finally, results of the risk assessment without correction and risk assessment with correction are presented for detailed visual inspection and general visual inspection
Jia, BaohuiFang, JiachenLu, XiangXiong, Yijie
In subsonic aircraft design, the aerodynamic performance of aircraft is compared meaningfully at a system level by evaluating their range and endurance, but cannot do so at an aerodynamic level when using lift and drag coefficients, CL and CD , as these often result in misleading results for different wing reference areas. This Part I of the article (i) illustrates these shortcomings, (ii) introduces a dimensionless number quantifying the induced drag of aircraft, and (iii) proposes an aerodynamic equation of state for lift, drag, and induced drag and applies it to evaluate the aerodynamics of the canard aircraft, the dual rotors of the hovering Ingenuity Mars helicopter, and the composite lifting system (wing plus cylinders in Magnus effect) of a YOV-10 Bronco. Part II of this article applies this aerodynamic equation of state to the flapping flight of hovering and forward-flying insects. Part III applies the aerodynamic equation of state to some well-trodden cases in fluid mechanics
Burgers, Phillip
Numerical investigation of airflow at a transonic speed over the wing of the NASA high-lift Common Research Model (CRM) with and without a conformal vortex generator (CVG), placed on the airfoil suction side has been performed. The objective of the investigation was to assess the impact of CVG on the wing’s lift to drag (L/D) ratio and tip vortices. The wing has aspect and taper ratios of respectively 9, and 0.275, and a leading-edge sweep angle of 37.24 degrees. The root and tip chords were respectively 11.81m and 2.73 m with an approximate mean chord of 6.62 m. The angle of attack was 2.5 degrees. The CVG was distorted V-shaped with a base distance of approximately 4.8 cm, a depth of 8.8 cm, and a tip-to root angle of approximately 30.20. The CVG is on both sides of the tape pointing in opposite directions. The tape is 2 mm thick, 83 cm wide, spanning the entire length of the wing surface. The leading edge of the CVG tape starts at 60% of the chord from the leading edge of the
Gada, KomalRahai, Hamid
Refueling operation of the aircraft fuel tanks has some limitations. One of the limitations is refueling time which restricts refueling duration for entire tank. Other one is overfilling situations which are also possible because of the wave damper designs in tank such as barriers and baffles resist against fuel creeping towards all sides of tank. Required refueling duration restricts refueling speed at a certain minimum value. On the other hand, baffle design restricts refueling speed at a certain maximum value. It should be the mathematical region between these two extremum points where the refueling mass flow rate can be defined. Minimum mass flow rate point can be adjusted with defining of mass flow rate depends of requirements easily but upper extremum point should be defined depends on design of baffles. It can only be changed with altering the design of interior wing tank. In that paper mathematical model of the tank interior volumes and its components are established in order
Karahan, KeremÖzdemir, Onur
Hummingbirds fly like insects but have the musculoskeletal system of birds. According to Bo Cheng, the Kenneth K. and Olivia J. Kuo Early Career Associate Professor in Mechanical Engineering at Penn State, hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, Cheng and his team of researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots
The proper design procedure is a critical factor that restricts the capacity of an unmanned aerial vehicle (UAV) to fly freely for long periods. A UAV could fly with a high lift force and less drag if the aerodynamic performance of the wings is taken into account. With the aim to identify the best configuration that provides a high aerodynamic ratio (L/D) at low flying speeds, the current study investigates single-taper wings with three different configurations (conventional, dihedral, and polyhedral). This is achieved by applying the fundamentals of sailplanes to the single-taper wing planform in this study. Various attacking angles from 0° to 15° were tested in the research using a high-lift low-speed airfoil, the AG-16, and a constant low Reynolds number of 3 × 105. SOLIDWORKS software was used to model the wings under investigation, while ANSYS Fluent software was used to run the simulation. All of the examples under study used the same mesh type, number of elements, and operating
Al-Zaini, Essam Oun AliMutaib, Ali H.Abboud, Zainab
This study consists of a novel approach based on Classical Mechanics to explain the aerodynamic forces on a body in motion relating to a fluid. This new approach does not require the presence of viscosity to generate the forces and is compatible with the Kutta condition. The physical reasoning of the approach is outlined with the introduction of the aerodynamic suction effect of the body. Next, the mathematical expressions and a code that models the physical phenomena are developed. These are applied for the case of a sphere immersed in a moving fluid and then an airfoil. An initial validation of this new approach is performed by a comparison of the theoretical results and the available results of the National Advisory Committee for Aeronautics (NACA) airfoils. This new mathematical approach is especially valid for high Reynolds numbers where viscosity can be neglected. The new codes based on this approach is less complex than other computational fluid dynamics (CFD) approaches based
Castillo Acero, Miguel A.Doria, Javier J.
This SAE Aerospace Recommend Practice (ARP) is intended to cover the external lights on fixed wing aircraft for illuminating the wing leading edge and engine nacelles and the upper surfaces of the wing. The addition of an ice detection system should be implemented when the areas to inspect are not visible from the aircraft cockpit. It is not intended that this recommended practice require the use of any particular light source such as halogen, LED, or other specific design of lamp
A-20B Exterior Lighting Committee
This article aims to analyze the effect of vortex generators (VGs) placed on symmetrical and cambered aerofoil. Simulation and experimental works were carried out using NACA 6321 and NACA 0021 aerofoils at different angles of attack (AOA) and aerodynamic performance obtained at a velocity of 15 m/s and 140625 Reynolds number (Re). In this study, aerofoils with the same thickness and a novel design of minute VGs were introduced and placed at a location of 0.5C (50% of chord). The VGs improved the stall AOA by 4° and 2° in simulation and experimental methods, respectively, with no drag increment compared to the baseline aerofoil. These VGs controlled the boundary layer over an aerofoil with enhancement in aerodynamic efficiency of subsonic aircrafts
Balaji, K.Gore, Mayuri R.Khandal, Sanjeevkumar
At hypersonic speed, severe aerodynamic heating is observed, and temperatures are too high to cool by radiation cooling; active cooling such as ablative cooling is helpful in this situation. The Thermal Protection System (TPS) consists of a layer of an ablative material, followed by an insulating material to lower the temperature at the inside wall of the lifting body. The surface area (considering the inside volume of the vehicle constant) of the TPS plays a vital role in heat transfer to the vehicle and heat transferred through the vehicle body. The minimum area sweepback angle (ΛArea-min) is the function of the principal radius (R) and the ratio of the principal radii of the forward bi-curvature stagnation surface (R/r). The ΛArea-min = 80° is obtained for R = 2 m and R/r = 2. The aerothermal analysis of the lifting body is of fundamental interest while designing the TPS. A Computational Fluid Dynamics (CFD) simulation of a two-dimensional (2D) lifting body against thermally perfect
Shilwant, RohanMahulikar, Shripad Prabhakar
Conventional high-lift systems allow transport aircraft to safely operate at low speeds for landing and takeoff. These high-lift devices, such as Fowler flaps, are complex, heavy, and have high part counts. Fowler flap mechanisms also protrude externally under the wings, requiring external fairings, which increase cruise drag. Simple-hinged flaps are less complex, and an ideal choice for low-drag cruise efficiency. However, simple-hinged flaps require high flap deflections to achieve lift comparable to Fowler flaps. These flap deflections cause severe adverse pressure gradients, which generate flow separation that is difficult to control. In response to these challenges, NASA developed the High Efficiency Low Power (HELP) active flow control (AFC) system
Fireflies have sparked the inspiration of MIT researchers. Taking a cue from nature, they built electroluminescent soft artificial muscles for flying, insect-scale robots. The tiny artificial muscles that control the robots’ wings emit colored light during flight
Items per page:
1 – 50 of 1203