Browse Topic: Fuselages

Items (331)
The objective of this paper is to analyze a complete fuselage of an airplane made of composite materials. The analysis presented includes designing a 3D fuselage structure in which parameters are calculated using various stress and deformation scenarios. Static numerical results propose a composite fuselage structure to reduce stress and deformation levels by 45 and 33% compared to an equivalent (existing) aluminum fuselage. This work is to continue with specific characteristics of the composite and considerations to more realistic loading conditions (dynamism, impact, fatigue). A complete study should suggest converting flying vehicles to composites, to increase performances, minimize weights, and improve payloads
Sulthan, S.Balaji, K.Akhil, C.K.Babu, V.
One of the most common types of lightweight materials used in aerospace is magnesium alloy. It has a high strength-to-weight ratio and is ideal for various applications. Due to its corrosion resistance, it is commonly used to manufacture of fuselages. Unfortunately, the conventional methods of metal cutting fail to improve the performance of magnesium alloy. One amongst the most common methods used for making intricate shapes in harder materials is through Wire-Electro-Discharge (WEDM). In this study, we have used magnesium alloy as the work material. The independent factors were selected as pulse duration and peak current. The output parameters of the process are the Surface Roughness (SR) and the Material Removal Rate (MRR). Through a single aspect optimization technique, Taguchi was able to identify the optimal combination that would improve the effectiveness of the WEDM process. The findings of the experimentation revealed that the technique could significantly enhance the wire-cut
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VKrishnamachary, PCKiruthika, JothiKotapati, Gowthami
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current. The findings of the study encompassed the material removal rate and surface
Natarajan, ManikandanPasupuleti, ThejasreeD, PalanisamyKumar, VKiruthika, JothiPolanki, Vamsinath
Multiphase CFD simulations of air and water play a critical role in aircraft icing analysis. Specifically for air data sensors mounted near the front of an aircraft, simulations that predict the concentration of water surrounding an aircraft fuselage are necessary for understanding their performance in icing conditions. Those simulations can aid in sensor design and placement, and are central for defining critical conditions to test during icing qualification campaigns. There are several methods available in CFD that solve a multiphase flow field. Two of the most common methods used are Lagrangian and Eulerian. While these methods are similar, important differences can be viewed in the results, specifically in how the water shadow zones are predicted. This paper compares a Lagrangian and Eulerian CFD method for solving a multiphase flow field, and assesses their performance for use for analyzing installation locations and critical icing conditions of air data probes
Thangavel, SathishCusher, Aaron
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing. In-flight ice accretion was calculated, using Ansys FENSAP-ICE, on 10°, 15° and 20° (low, intermediate, and high) sweep horizontal stabilizers, with
Page, JamesOzcer, IsikZanon, AlessandroDe Gennaro, Michele
Considerable amounts of water accumulate in aircraft fuel tanks due to condensation of vapor during flight or directly during fueling with contaminated kerosene. This can result in a misreading of the fuel meters. In certain aircraft types, ice blocks resulting from the low temperatures at high altitude flights or in winter time can even interfere with the nozzles of the fuel supply pipes from the tanks to the engines. Therefore, as part of the maintenance operations, water has to be drained in certain intervals ensuring that no remaining ice is present. In the absence of an established method for determining residual ice blocks inside, the aircraft operator has to wait long enough, in some cases too long, to start the draining procedure, leading potentially to an unnecessary long ground time. A promising technology to determine melting ice uses acoustic signals generated and emitted during ice melting. With acoustic emissions, mainly situated in the ultrasonic frequency range, a very
Pfeiffer, HelgeReynaert, JohanSeveno, DavidJordaens, Pieter-JanCeyhan, OzlemWevers, Martine
Determining local ice crystal icing concentration factors in the region of the forward fuselage is critical for setting the Total Water Content levels for air data probe qualification testing. Simulation, modeling, and testing techniques for this concentration-factor phenomenon are still in their infancy, and there is currently not a significant amount of this type of analysis in the literature. A representative, 3D analysis was conducted using transport airplane geometry and flight conditions that explored the sensitivities resulting from parametric changes to flight and ice crystal icing conditions, particle modeling parameters, and bouncing effects
Malone, Adam
This document provides guidance for in-flight rest facilities provided for use by cabin crew on commercial transport airplane. This document is applicable to dedicated cabin crew rest facilities with rigid walls. The facility includes a bunk or other surface that allows for a flat sleeping position, is located in an area that is temperature-controlled, allows the crew member to control light, and provides isolation from noise and disturbance
S-9B Cabin Interiors and Furnishings Committee
The fundamental characteristic of aircraft assembly is assembly measurement accuracy. A single digital measurement device can meet the requirements of an analytical and small surface. But a single digital measurement device cannot meet the measurement requirements for synthetic and large surfaces, such as fuselage panel components. This research aims to establish a combined measurement method to improve the measurement quality and extend the measurement area. The method demonstrated the combined measurement method utilizing a combination of the laser tracker and the articulated arm measuring machine. In this research, the combined measurement system is constructed based on the complexity and large size of the fuselage panel. The articulated arm measuring machine is used to scan the surface of the panel components accurately and the coordinate conversion of the common points measured by the laser tracker to realize the shape of the aircraft fuselage panel. Then the measurement process
Miah, Md HelalZhang, Jianhua
This SAE Aerospace Information Report (AIR) provides various graphical displays of atmospheric variables related to aircraft icing conditions in natural clouds. It is intended as a review of recent developments on the subject, and for stimulating thought on novel ways to arrange and use the available data. Included in this Report is FAR 25 (JAR 25) Appendix C, the established Aircraft Icing Atmospheric Characterization used for engineering design, development, testing and certification of civilian aircraft to fly in aircraft icing conditions
AC-9C Aircraft Icing Technology Committee
This document describes a practical system for a user to determine observer-to-aircraft distances. These observer-to-aircraft distances can be either closest point of approach (CPA) distances during field measurements or overhead distances during acoustic certification tests. The system uses a digital camera to record an image of the subject aircraft. A method of using commercial software to obtain the distance from such an image is presented. Potential issues which may affect accuracy are discussed
A-21 Aircraft Noise Measurement Aviation Emission Modeling
This SAE Aerospace Information Report presents a glossary of terms commonly used in the ground delivery of fuel to an aircraft and pertinent terms relating to the aircraft being refueled
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
Incidents where a piece of ground support equipment or personnel damages an aircraft under the control of ground or maintenance operations that requires corrective action by aircraft maintenance personnel. Operations include, but are not limited to servicing, line maintenance, heavy maintenance, and aircraft movement, e.g., marshalling/pushback/tow/reposition/taxi
AGE-3 Aircraft Ground Support Equipment Committee
The data in this document is, at this stage, primarily concerned with the interface of pallet/container loaders and lower-deck compartments of standard and wide-body aircraft although the principles illustrated may be applied to the main-decks of narrow and wide-body aircraft. NOTE: For the purpose of this document, in accordance with Part 3 of the Directives for the technical work of ISO and with accepted IATA practice, minimum essential criteria defined by the word "shall" are absolute requirements. Recommended criteria identified by the word "should", while considered important, are not mandatory
AGE-3 Aircraft Ground Support Equipment Committee
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions
A-5B Gears, Struts and Couplings Committee
The purpose of this Aerospace Information Report is to provide the industry with methodologies for measuring tire/wheel gear alignment and the range of acceptable alignment settings for various types of non-military landing gear. This AIR will focus on the general aviation, corporate, and regional aircraft landing gear but could have applicability to commercial aircraft
A-5 Aerospace Landing Gear Systems Committee
Due to the great use of airplanes for transportation, it was necessary some studies to improve it, one of the most difficult problems to solve, is the noise generated by the systems. In-flight sound pressure levels can sometimes be intense and cause fatigue to the cabin crew, communication failures and discomfort to the passengers. This is often caused by the turbulent boundary layer over the aircraft body, engine noise and vibration and internal aircraft systems. The aircraft hydraulic system is responsible for moving the rudder, aileron, brakes, main door, and other components, and consequently, the noise of this system became more noticeable. This system comprises a pump, generally, located at the back of the aircraft and pipes, which are fixed along the fuselage. The pipes are connected to the fuselage using rubber mounts. Analyzing experimental measurements is possible to identify that hydraulic system contribute to the in-flight sound pressure level in the aircraft cabin. However
Fiorentin, T. A.Silva, G. G.
For new aircraft production, initial production typically reveals difficulty in achieving some assembly level tolerances which in turn lead to non-conformances at integration. With initial design, tooling, build plans, automation, and contracts with suppliers and partners being complete, the need arises to resolve these integration issues quickly and with minimum impact to production and cost targets. While root cause corrective action (RCCA) is a very well know process, this paper will examine some of the unique requirements and innovative solutions when addressing variation on large assemblies manufactured at various suppliers. Specifically, this paper will first review a completed airplane project (Project A) to improve fuselage circumferential and seat track joins and continue to the discussion on another application (Project B) on another aircraft type but having similar challenges. The use of Project A and B is used here to ensure proprietary protection of internal and supplier
Hall, Thomas D.
Unmanned Aerial Vehicles (UAVs) are becoming an effective way to serve humanitarian relief efforts during environmental disasters. The process of designing such UAVs poses challenges in optimizing design variables such as maneuverability, payload capacity and maximizing endurance because the designing of a BWB takes into account the interdependency between the stability and aerodynamic performance. The Blended Wing Body is an unconventional aircraft configuration which offers enhanced performance over conventional UAVs. In this study the designing of a BWB is investigated with an aim to achieve structurally sound and aerodynamically stable configuration. The design has been done by taking into consideration the side and top view airfoil for fuselage, because fuselage is a major lift generating portion in the UAV. For designing the control surfaces, the two major requirements for a controlled and safe flight of a UAV are its stability and maneuverability. The purpose of this study is
Bainsla, AmitSingari, RanganathPal, AkshitKumar, Amit
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions
A-5B Gears, Struts and Couplings Committee
This SAE Information Report (AIR) provides descriptions of High Lift Systems of commercial and military aircraft. The main focus is on mechanical systems which may be actuated hydraulically or electrically
A-6B3 Electro-Mechanical Actuation Committee
The purpose of this document is to provide a standard for aircraft fuselage markings located at the doors used for ground servicing operations. These markings can be used by all GSE that will dock at the aircraft. These markings may be used for one or several phases of the GSE positioning relative to the aircraft process: GSE alignment during approach, GSE final docking, and GSE auto leveling. It is not the purpose of this standard to describe the different technologies, cameras, or other equipment that can be mounted on GSE to utilize these markings. The aircraft that may use these markings will have a fuselage diameter of 3 m or more
AGE-3 Aircraft Ground Support Equipment Committee
Since, ice accretion can significantly degrade the performance and the stability of an airborne vehicle, it is imperative to be able to model it accurately. While ice accretion studies have been performed on airplane wings and helicopter blades in abundance, there are few that attempt to model the process on more complex geometries such as fuselages. This paper proposes a methodology that extends an existing in-house Extended Messinger solver to complex geometries by introducing the capability to work with unstructured grids and carry out spatial surface streamwise marching. For the work presented here commercial solvers such as STAR-CCM+ and ANSYS Fluent are used for the flow field and droplet dispersed phase computations. The ice accretion is carried out using an in-house icing solver called GT-ICE. The predictions by GT-ICE are compared to available experimental data, or to predictions by other solvers such as LEWICE and STAR-CCM+. Three different cases with varying levels of
Gupta, AvaniSankar, LakshmiKreeger, Richard
The demanded development towards various emission reduction goals set up by several institutions forces the aerospace industry to think about new technologies and alternative aircraft configurations. With these alternative aircraft concepts, the landing gear layout is also affected. Turbofan engines with very high bypass ratios could increase the diameter of the nacelles extensively. In this case, mounting the engines above the wing could be a possible arrangement to avoid an exceedingly long landing gear. Thus, the landing gear could be shortened and eventually mounted at the fuselage instead of the wings. Other technologies such as high aspect ratio wings have an influence on the landing gear integration as well. To assess the difference, especially in weight, between the conventional landing gear configuration and alternative layouts a method is developed based on preliminary structural designs of the different aircraft components, namely landing gear, wing and fuselage. Simplified
Kling, UlrichHornung, Mirko
Computational ice shapes were generated on the boundary layer ingesting engine nacelle of the D8 Double Bubble aircraft. The computations were generated using LEWICE3D, a well-known CFD icing post processor. A 50-bin global drop diameter discretization was used to capture the collection efficiency due to the direct impingement of water onto the engine nacelle. These discrete results were superposed in a weighted fashion to generate six drop size distributions that span the Appendix C and O regimes. Due to the presence of upstream geometries, i.e. the fuselage nose, the trajectories of the water drops are highly complex. Since the ice shapes are significantly correlated with the collection efficiency, the upstream fuselage nose has a significant impact on the ice accretion on the engine nacelle. These complex trajectories are caused by the ballistic nature of the particles and are thus exacerbated as particle size increases. Shadowzones are generated on the engine nacelle, and due to
Porter, Christopher
Modern aerospace industry develops assembly process lines for new aircraft which is produced on a single production line while shortening production times by new technologies. Production processes are developed with systems such as lightweight fixtures, reconfigurable tools, automated part positioning, automated scanning countersink control, automated riveting, robotic measurement etc. These systems provide the necessary flexibility for aircraft fuselage and wing assembly projects. Aerospace manufacturers invest in assembly lines in order to increase production rates and meet growing customer demands. Most of the investments are allocated to state-of-the-art robots for drilling and riveting, sealing, coating and painting applications, in addition to material handling, carbon fiber layup and different types of machining operations. In this study, an assembly system design methodology is developed by using axiomatic design principles in order to propose a solution to design complexity
Celek, Osman EmreYurdakul, MustafaIc, Tansel
A review of critical technologies and manufacturing advances that have enabled the evolution of the composite fuselage is described. The author’s perspective on several development, military, and production programs that have influenced and affected the current state of commercial fuselage production is presented. The enabling technologies and current approaches being used for wide body aircraft fuselage fabrication and the potential reasons why are addressed. Some questions about the future of composite fuselage are posed based on the lessons learned from today and yesterday
Hiken, Alan
Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement. Additionally, since the tools are all contained within an interlocked enclosure, this system reduces the required frequency of tool
Merluzzi, JamesBahr, Isaac
Electroimpact, in collaboration with Boeing, has developed an advanced robotic assembly cell, dubbed “The Quadbots.” Using Electroimpact’s patented Accurate Robot technology and multi-function end effector (MFEE), each robot can drill, countersink, inspect hole quality, apply sealant, and insert fasteners into the part. The cell consists of 4 identical machines simultaneously working on a single section of the Boeing 787 fuselage, two on the left, and two on the right. These machines employ “collision avoidance” a new feature in their software to help them work more synchronously. The collision avoidance software uses positional feedback from external safety rated encoders mounted to the motors on the robot. From this feedback, safe spaces, in the form of virtual boundaries can be created. Such that a robot will stop and wait if the adjacent robot is in, or going to move into its programmed work envelope. Another feature of the collision avoidance is to limit robot speeds when they are
Everhart, Tyler
Items per page:
1 – 50 of 331