Browse Topic: Munitions
Affordable mass refers to the ability to rapidly produce large quantities of effective, cost-efficient munitions and systems. It's not about cutting corners but about optimizing every facet of the production process, from design to deployment. The challenge goes beyond strategic methods of design and manufacturing - and must feature industrywide acceptance of affordability as a means of adding capacity, survivability, and efficacy to a new generation of munitions. The Department of Defense (DoD) is faced with preparing for potential confrontations with peer or near-peer adversaries. Unlike conflicts of the past, where U.S. forces may have faced regional militias with limited air defense capabilities, today's enemy is armed with integrated air defense systems (IADS) capable of countering non-stealth aircraft and outdated weapons. While advanced 5th generation F-35 fighters and B-21 stealth bombers can penetrate these modern air defenses, the Air Force must also develop an inventory of
Anduril Industries Orange County, CA Contact@anduril.com
Every time a soldier pulls the trigger on a 7.62 rifle or pulls the wire of a 155 Howitzer, a complex chain reaction ensues over the next millisecond that we refer to as the ignition event. The ignition event involves a highly dynamic interaction with heat and mass transfer between multiple reacting chemicals across a varied spatial domain to achieve rapid and uniform burning of the entire granular propellant bed. After the ignition event, standard interior ballistics apply: Propellant is burnt, pressure increases and the projectile accelerates down the barrel until leaving the muzzle. To date, the details and controlling mechanisms of the ignition event and propagation into granular propellant beds have not been well understood or characterized. Weapon designers often simplify the ignition and combustion process by assuming it behaves in a quasi-static manner, and therefore the thermodynamic state across the entire combustion chamber at any point in time is modeled by single, uniform
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases. Capable of downing dangerous drone swarms with instant effect, at only 10p per shot, the RFDEW is a highly capable and cost-effective alternative to traditional missile-based air defense systems. It will be able to effect targets up to 1 km away, with further development in extending the range ongoing. Its high level of automation also means the system can be operated by a single person.
Defense Equipment & Support (DE&S) Bristol, UK 0117-913-0893
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Lockheed Martin Orlando, FL 407-284-9248
The development of hypersonic missiles represents the most significant advancement of defense weaponry since the 1960s. However, they also pose unique challenges for both design and technology. The term “hypersonic” refers to any speed faster than five times the speed of sound, or above Mach 5. Modern hypersonic missile systems require extensive communications interconnects within a highly confined space. This space requirement creates a demand for solutions combining small form factor with reduced weight and rugged construction to withstand high vibration and impact conditions from deployment to target. Currently there are two types of hypersonic weapons. Hypersonic glide vehicles (HGVs), also known as boost-glide vehicles, typically launch from ballistic missiles and are released at a specific altitude, speed, and with the flight path tailored to a target without being powered. Hypersonic cruise missiles (HCMs) are powered all the way to their targets, flying at lower altitudes than
In 2023, Parry Labs was awarded two tasks under the Aviation and Missile Technology Consortium's (AMTC) Other Transactions Agreement to lead a multi-vendor team to collaboratively define the Army's Modular Open Systems Approach (MOSA) requirements for computing and software operating environments for all future Army Aviation procurements. This relatively new approach for the Army and industry drove collaboration and allowed U.S. Government (USG) to make key modularity and openness decisions relative to Aviation Mission Computing Environment (AMCE). This unique opportunity provided a platform for industry to openly inform requirements at a much more granular level than previously possible, providing assurances that such detailed requirements wouldn't be an overreach or constrain innovation and disrupt industry business models. Solicited to the entire AMTC, which represents the vast majority of the aviation industrial base, the AMTC and USG team selected the most qualified vendors to
L3Harris Technologies Melbourne, FL 585-465-3592
This report reviews human factors research on the supervision of multiple unmanned vehicles (UVs) as it affects human integration with Air-Launched Effects (ALE). U.S. Army Combat Capabilities Development Command Analysis Center, Fort Novosel, Alabama Air-Launched Effects (ALEs) are a concept for operating small, inexpensive, attritable, and highly autonomous unmanned aerial systems that can be tube launched from aircraft. Launch from ground vehicles is planned as well, although Ground-Launched Effects are not yet a requirement. ALEs are envisioned to provide “reconnaissance, surveillance, target acquisition (RSTA), and lethality with an advanced team of manned and unmanned aircraft as part of an ecosystem including Future Attack and Reconnaissance Aircraft (FARA) and ALE.” A primary purpose of ALEs is to extend “tactical and operational reach and lethality of manned assets, allowing them to remain outside of the range of enemy sensors and weapon systems while delivering kinetic and
Raytheon Arlington, VA 202-384-2474
Air-Launched Effects (ALEs) are a concept for operating small, inexpensive, attritable, and highly autonomous unmanned aerial systems that can be tube launched from aircraft. Launch from ground vehicles is planned as well, although Ground-Launched Effects are not yet a requirement. ALEs are envisioned to provide “reconnaissance, surveillance, target acquisition (RSTA), and lethality with an advanced team of manned and unmanned aircraft as part of an ecosystem including Future Attack and Reconnaissance Aircraft (FARA) and ALE.” A primary purpose of ALEs is to extend “tactical and operational reach and lethality of manned assets, allowing them to remain outside of the range of enemy sensors and weapon systems while delivering kinetic and non-kinetic, lethal and non-lethal mission effects against multiple threats, as well as, providing battle damage assessment data.”
More than five years ago, then-U.S. Undersecretary of Defense for Research and Engineering, Michael Griffin, announced the department's future Defense Digital Engineering Strategy. That long-term strategy, still ongoing, aims to “formalize the development, integration, and use of models to inform enterprise and program decision making,” and provide “an enduring, authoritative source of truth” for improved innovation and culture-wide collaboration in making weapons systems and parts. Within U.S. and Allied defense departments, there is increasing awareness that additive manufacturing (AM, aka 3D printing) as a means for achieving digitalized, on-demand, production agility, has a significant role to play in realizing these strategic goals. AM is already providing faster and more flexible part turnaround and cost reduction of some low- and even mid-volume military parts. In compliance with Department of Defense (DoD) objectives, AM is a model-based, integrated, and enterprise-ready
This standard only defines interconnect, electrical and logical (functional) requirements for the interface between a Micro Munition and the Host. The physical and mechanical interface between the Micro Munition and Host is undefined. Individual programs will define the relevant requirements for physical and mechanical interfaces in the Interface Control Document (ICD) or system specifications. It is acknowledged that this does not guarantee full interoperability of Interface for Micro Munitions (IMM) interfaces until further standardization is achieved.
This recommended practice covers the requirements and qualification tests for two types of flexible all-metal hose assemblies intended for hydraulic use on missile and rocket applications at rated pressures of 4000 psi. Type I -65° to +650 °F service temperature range Type II -65° to +1000 °F service temperature range
During her recent remarks at the National Defense Industrial Association's (NDIA) Emerging Technologies for Defense conference, U.S. Deputy Secretary of Defense Kathleen Hicks outlined the agency's new “Replicator” initiative. Under the new Replicator initiative, over the next 18 to 24 months, the Defense Department will deploy thousands of low cost autonomous systems across multiple domains. DoD officials are limiting the amount of information they will release around technology or platform specifics for Replicator. Hicks did confirm however that Replicator has been established to counter the rapid buildup of the People's Republic of China's (PRC) armed forces, weapons and new technologies.
A new spatial calibration procedure has been introduced for infrared optical systems developed for cases where camera systems are required to be focused at distances beyond 100 meters. Army Combat Capabilities Development Command Armaments Center, Picatinny Arsenal, NJ All commercially available camera systems have lenses (and internal geometries) that cannot perfectly refract light waves and refocus them onto a two-dimensional (2D) image sensor. This means that all digital images contain elements of distortion and thus are not a true representation of the real world. Expensive high-fidelity lenses may have little measurable distortion, but if sufficient distortion is present, it will adversely affect photogrammetric measurements made from the images produced by these systems. This is true regardless of the type of camera system, whether it be a daylight camera, infrared (IR) camera, or camera sensitive to another part of the electromagnetic spectrum. The most common examples of large
Resupply missions are critical logistical parts of modern warfare. Supply vehicles carrying fuel and ammunition are high-value targets meaning that the route chosen to approach such a mission is sensitive to risk and a critical time of delivery. We address the problem of a supply vehicle that needs to find a secure path to link up with a mobile frontline unit that has a fixed known itinerary. This paper presents a resupply path planning algorithm, the Adaptive Intercepting Path Planning (AIPP) algorithm, that balances risk and travel time to find the most suitable rendezvous point among several. The algorithm generates the least risky route that meets the rendezvous deadline.
United States adversaries are advancing unmanned systems (UxS) at an exponential rate. New advancements in lightweight intelligence, surveillance, reconnaissance (ISR) targeting sensors, size, weight, and power (SWAP) computational payloads, machine learning (ML) and artificial intelligence (AI), have generated an advanced threat to U.S forces. The recent conflict in Ukraine illustrates the usage of lethal, weaponized UxS at scale in both conventional and irregular warfare and demonstrates the need for robotic systems capable of autonomous precision targeting and kinetic defeat. [1] The Wolf Pack project aims at developing modular weapons payloads (MWP) for quadruped unmanned ground vehicles (Q-UGV). The MWP system would integrate precision targeting sensors, networked lethality software, narrow AI/ML precision trackers, and advanced fire control with weapon systems such as rifles (M4), anti-armor (AT-4) and tube lunched systems (40mm loitering munition). The MWP system would run on
Kongsberg Defence & Aerospace selected a radar test setup from Rohde & Schwarz based on the R&S SMW200A vector signal generator for multi-channel phase-coherent radar signal generation. Kongsberg is Norway’s premier supplier of defense and aerospace-related technologies. The joint strike missile (JSM) is a fifth generation long range precision strike missile. Using advanced sensors, the JSM can locate targets based on their electronic signature. Qualification of the JSM is under way with the Royal Norwegian Air Force (RNoAF).
Kongsberg Defence & Aerospace selected a radar test setup from Rohde & Schwarz based on the R&S SMW200A vector signal generator for multi-channel phase-coherent radar signal generation. Kongsberg is Norway's premier supplier of defense and aerospace-related technologies. The joint strike missile (JSM) is a fifth generation long range precision strike missile. Using advanced sensors, the JSM can locate targets based on their electronic signature. Qualification of the JSM is under way with the Royal Norwegian Air Force (RNoAF). Kongsberg's JSM must operate autonomously in highly contested environments. To increase mission success, the missile has a passive RF sensor that can locate and identify radio frequency emitters. To test and verify this RF direction finding capability in a laboratory, Kongsberg required a multi-channel phase coherent vector signal generator that could be linked to existing test environments.
Bullet impact (BI) is a standard test used to assess ordnance during insensitive munitions (IM) testing, for hazard classification, and for safety evaluations. IM evaluation and scoring features a series of tests designed to quantify the response of a munition to a variety of thermal and impact threats that are possible throughout its lifecycle, such as a fuel fire and impact from fragments and shaped charge jets. The BI test is designed to simulate a small arms attack.
A bullet impact (BI) test for evaluating the response of energetically loaded items has been established at the U.S. Army Combat Capabilities Command (DEVCOM) Armaments Center (AC) Explosive Development Facility. Army Combat Capabilities Command, Picatinny Arsenal, NJ Bullet impact (BI) is a standard test used to assess ordnance during insensitive munitions (IM) testing, for hazard classification, and for safety evaluations. IM evaluation and scoring features a series of tests designed to quantify the response of a munition to a variety of thermal and impact threats that are possible throughout its lifecycle, such as a fuel fire and impact from fragments and shaped charge jets. The BI test is designed to simulate a small arms attack. This test is described in North Atlantic Treaty Organization (NATO) standards Allied Ordnance Publication (AOP)-39, “Policy for Introduction and Assessment of Insensitive Munitions (IM),” and AOP-4241, “Bullet Impact Munition Test Procedures,” and the
Northrop Grumman San Diego, CA 858-245-7929
RF cable assemblies might appear to be a minor component in system design, but they can make all the difference between success and failure, especially in mission-critical industries such as defense and space. The RF interconnect is the vital bridge between many critical systems, including payload, communications, signal transport, and processing. This article will primarily focus on hypersonic missile systems and satellites to illustrate these concepts, as they jointly highlight the importance of RF cable assembly design in extreme environments.
As the Department of Defense (DoD) prepares the military for the evolving needs of the 21st century battlefield, its focus is on emerging technologies that enable all domain operations, from cyber to the electromagnetic spectrum. In parallel, the DoD continues to pay close attention to the fundamental supply-chain building blocks of future weapons systems ranging from open standards and smaller form factors to cost controls and supply chain strengthening.
The U.S. Air Force has completed the functional configuration audit (FCA) of the latest variant of Raytheon Technologies' Advanced Medium Range Air-to-Air Missile (AMRAAM). The AMRAAM AIM-120D-3 is on-track toward fielding by both the Air Force and Navy this year.
The purpose of this recommended practice is to provide the missile hydraulic and pneumatic component designer with information learned, tested, and substantiated in the correction of problems and failures experienced with seals that are subject to the unique requirements of missile static storage and subsequent dynamic operational conditions.
This SAE Aerospace Information Report (AIR) includes all missile and launch vehicle actuation systems, including electrohydraulic, electropneumatic, and electromechanical types. The data for many systems are not complete. As more information becomes available, periodic updates will be issued to complete existing data sheets and to add new ones. An index by type of vehicle and by type of actuation system is included. The actual data sheets in the body of the report are organized in alphabetical order.
This document defines and illustrates the process for determination of uncertainty of turbofan and turbojet engine in-flight thrust and other measured in-flight performance parameters. The reasons for requiring this information, as specified in the E-33 Charter, are: determination of high confidence aircraft drag; problem rectification if performance is low; interpolation of measured thrust and aircraft drag over a range of flight conditions by validation and development of high confidence analytical methods; establishment of a baseline for future engine modifications. This document describes systematic and random measurement uncertainties and methods for propagating the uncertainties to the more complicated parameter, in-flight thrust. Methods for combining the uncertainties to obtain given confidence levels are also addressed. Although the primary focus of the document is in-flight thrust, the statistical methods described are applicable to any measurement process. The E-33 Committee
Today, defense organizations in several countries are attempting to expand military capabilities by investing in hypersonic missile development. Since these missiles travel at Mach 5, or nearly 4,000 mph, there are naturally a variety of challenges for developing both the actual weapons systems and the corresponding detection systems. While challenges span nearly every aspect of developing these missiles, in this article we will focus specifically on the key challenges associated with the embedded electronics and communication systems. We will also look at how aerospace and defense engineers working on hypersonic missiles can ensure they are selecting supplier partners that are well positioned to meet these unique challenges by looking into their space heritage and history developing high-reliability radiofrequency (RF) components.
SpearUAV Tel Aviv, Israel +972-54-228-2822
This SAE Aerospace Information Report (AIR) provides various graphical displays of atmospheric variables related to aircraft icing conditions in natural clouds. It is intended as a review of recent developments on the subject, and for stimulating thought on novel ways to arrange and use the available data. Included in this Report is FAR 25 (JAR 25) Appendix C, the established Aircraft Icing Atmospheric Characterization used for engineering design, development, testing and certification of civilian aircraft to fly in aircraft icing conditions.
Short-range missiles pose a significant threat to U.S. strike fighters. These missiles are usually small and highly mobile and can be carried on light vehicles and by individual people. Although these missiles do not have a long range, the unpredictability of their launch sites increases their lethality. Also contributing to their lethality are the methods of homing in on their targets. Most are passive methods, such as infrared. Unlike active radar homing, these missiles provide no warning to the aircraft that it is being tracked until the missile has been launched.
To achieve battlespace dominance, energy flow characterizations of individual platforms and the aggregate battlespace must be developed to adapt and exploit the variable operating conditions. Army Research Laboratory, White Sands Missile Range, New Mexico The future battlefield will be filled with multiple dissimilar energy networks including unmanned and manned vehicular platforms actively engaged in cooperative control and communications capable of overpowering an adversary and dominating the battlespace. This chaotic multi-domain operational environment will be limited by variable operating conditions (mission profiles, terrain, atmospheric conditions), copious amounts of real-time actionable intelligence derived from weapon and sensor suites, and most importantly, the energy capabilities of each platform. To achieve dominance within the battlespace, energy flow characterizations of individual platforms and the aggregate battlespace must be developed with respect to the variable
Items per page:
50
1 – 50 of 1001