Browse Topic: Missiles

Items (416)
BlueHalo Arlington, VA 703-718-4050
Defense Equipment & Support (DE&S) Bristol, UK 0117-913-0893
The aim of this paper is to present a numerical analysis of high-speed flows over a missile geometry. The N1G missile has been selected for our study, which is subjected to a high-speed flow at Mach 4 over a range of Angle of attack (AoA) from 0° to 6°. The analysis has been conducted for a 3-dimensional missile model using ANSYS environment. The study contemplates to provide new insights into the missile aerodynamic performance which includes the coefficient of lift (CL), coefficient of drag (CD) and coefficient of moment (CM) using computational fluid dynamics (CFD). As there is a lack of availability of data for missile geometries, such as free stream conditions and/or the experimental data for a given Mach number, this paper intends to provide a detailed analysis at Mach 4. As the technology is advancing, there is a need for high-speed weapons (missiles) with a good aerodynamic performance, which intern will benefit in reduction of fuel consumption. In order to meet the
Padmanabha, M AnanthPrasad, BhoomikaSivasubramanian, Jayahar
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Kamal, AbhishekDeka, SushmitaSahoo, NiranjanKulkarni, Vinayak
Lockheed Martin Orlando, FL 407-284-9248
In 2023, Parry Labs was awarded two tasks under the Aviation and Missile Technology Consortium's (AMTC) Other Transactions Agreement to lead a multi-vendor team to collaboratively define the Army's Modular Open Systems Approach (MOSA) requirements for computing and software operating environments for all future Army Aviation procurements. This relatively new approach for the Army and industry drove collaboration and allowed U.S. Government (USG) to make key modularity and openness decisions relative to Aviation Mission Computing Environment (AMCE). This unique opportunity provided a platform for industry to openly inform requirements at a much more granular level than previously possible, providing assurances that such detailed requirements wouldn't be an overreach or constrain innovation and disrupt industry business models. Solicited to the entire AMTC, which represents the vast majority of the aviation industrial base, the AMTC and USG team selected the most qualified vendors to
The development of hypersonic missiles represents the most significant advancement of defense weaponry since the 1960s. However, they also pose unique challenges for both design and technology. The term “hypersonic” refers to any speed faster than five times the speed of sound, or above Mach 5. Modern hypersonic missile systems require extensive communications interconnects within a highly confined space. This space requirement creates a demand for solutions combining small form factor with reduced weight and rugged construction to withstand high vibration and impact conditions from deployment to target. Currently there are two types of hypersonic weapons. Hypersonic glide vehicles (HGVs), also known as boost-glide vehicles, typically launch from ballistic missiles and are released at a specific altitude, speed, and with the flight path tailored to a target without being powered. Hypersonic cruise missiles (HCMs) are powered all the way to their targets, flying at lower altitudes than
L3Harris Technologies Melbourne, FL 585-465-3592
Unguided sounding rockets, also known as sub-orbital rockets, are vehicles that carry scientific experiments and/or sensors to collect data during their trajectory. These rockets lack active control but are capable of traversing the Earth’s atmosphere. It is crucial to thoroughly analyze the flight parameters during the preliminary design phase. The Open Rocket flight simulation software, developed by Sampo Niskanen, is a widely used open-source project. However, it has some simplifications in comparison to its documentation. It does not specify the calculations of critical parameters required for the rocket’s stability during its flight. Additionally, it does not calculate data related to dynamic stability, which encompasses the system’s ability to make disturbances corrections during the rocket’s trajectory. Consequently, this study presents a flight simulation of a rocket with 6 degrees of freedom using Matlab/Simulink. Two scenarios are simulated: one without wind and another with
de Oliveira Junior, Wilson LuizFazzolari, Heloise AssisFreire, Cesar Monzude Paiva Carvalho, Carlos Alberto
This recommended practice covers the requirements and qualification tests for two types of flexible all-metal hose assemblies intended for hydraulic use on missile and rocket applications at rated pressures of 4000 psi. Type I -65° to +650 °F service temperature range Type II -65° to +1000 °F service temperature range
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
During her recent remarks at the National Defense Industrial Association's (NDIA) Emerging Technologies for Defense conference, U.S. Deputy Secretary of Defense Kathleen Hicks outlined the agency's new “Replicator” initiative. Under the new Replicator initiative, over the next 18 to 24 months, the Defense Department will deploy thousands of low cost autonomous systems across multiple domains. DoD officials are limiting the amount of information they will release around technology or platform specifics for Replicator. Hicks did confirm however that Replicator has been established to counter the rapid buildup of the People's Republic of China's (PRC) armed forces, weapons and new technologies.
Kongsberg Defence & Aerospace selected a radar test setup from Rohde & Schwarz based on the R&S SMW200A vector signal generator for multi-channel phase-coherent radar signal generation. Kongsberg is Norway’s premier supplier of defense and aerospace-related technologies. The joint strike missile (JSM) is a fifth generation long range precision strike missile. Using advanced sensors, the JSM can locate targets based on their electronic signature. Qualification of the JSM is under way with the Royal Norwegian Air Force (RNoAF).
Kongsberg Defence & Aerospace selected a radar test setup from Rohde & Schwarz based on the R&S SMW200A vector signal generator for multi-channel phase-coherent radar signal generation. Kongsberg is Norway's premier supplier of defense and aerospace-related technologies. The joint strike missile (JSM) is a fifth generation long range precision strike missile. Using advanced sensors, the JSM can locate targets based on their electronic signature. Qualification of the JSM is under way with the Royal Norwegian Air Force (RNoAF). Kongsberg's JSM must operate autonomously in highly contested environments. To increase mission success, the missile has a passive RF sensor that can locate and identify radio frequency emitters. To test and verify this RF direction finding capability in a laboratory, Kongsberg required a multi-channel phase coherent vector signal generator that could be linked to existing test environments.
RF cable assemblies might appear to be a minor component in system design, but they can make all the difference between success and failure, especially in mission-critical industries such as defense and space. The RF interconnect is the vital bridge between many critical systems, including payload, communications, signal transport, and processing. This article will primarily focus on hypersonic missile systems and satellites to illustrate these concepts, as they jointly highlight the importance of RF cable assembly design in extreme environments.
The U.S. Air Force has completed the functional configuration audit (FCA) of the latest variant of Raytheon Technologies' Advanced Medium Range Air-to-Air Missile (AMRAAM). The AMRAAM AIM-120D-3 is on-track toward fielding by both the Air Force and Navy this year.
The purpose of this recommended practice is to provide the missile hydraulic and pneumatic component designer with information learned, tested, and substantiated in the correction of problems and failures experienced with seals that are subject to the unique requirements of missile static storage and subsequent dynamic operational conditions.
A-6C2 Seals Committee
This SAE Aerospace Information Report (AIR) includes all missile and launch vehicle actuation systems, including electrohydraulic, electropneumatic, and electromechanical types. The data for many systems are not complete. As more information becomes available, periodic updates will be issued to complete existing data sheets and to add new ones. An index by type of vehicle and by type of actuation system is included. The actual data sheets in the body of the report are organized in alphabetical order.
A-6B1 Hydraulic Servo Actuation Committee
This document defines and illustrates the process for determination of uncertainty of turbofan and turbojet engine in-flight thrust and other measured in-flight performance parameters. The reasons for requiring this information, as specified in the E-33 Charter, are: determination of high confidence aircraft drag; problem rectification if performance is low; interpolation of measured thrust and aircraft drag over a range of flight conditions by validation and development of high confidence analytical methods; establishment of a baseline for future engine modifications. This document describes systematic and random measurement uncertainties and methods for propagating the uncertainties to the more complicated parameter, in-flight thrust. Methods for combining the uncertainties to obtain given confidence levels are also addressed. Although the primary focus of the document is in-flight thrust, the statistical methods described are applicable to any measurement process. The E-33 Committee
E-33 In Flight Propulsion Measurement Committee
Today, defense organizations in several countries are attempting to expand military capabilities by investing in hypersonic missile development. Since these missiles travel at Mach 5, or nearly 4,000 mph, there are naturally a variety of challenges for developing both the actual weapons systems and the corresponding detection systems. While challenges span nearly every aspect of developing these missiles, in this article we will focus specifically on the key challenges associated with the embedded electronics and communication systems. We will also look at how aerospace and defense engineers working on hypersonic missiles can ensure they are selecting supplier partners that are well positioned to meet these unique challenges by looking into their space heritage and history developing high-reliability radiofrequency (RF) components.
Short-range missiles pose a significant threat to U.S. strike fighters. These missiles are usually small and highly mobile and can be carried on light vehicles and by individual people. Although these missiles do not have a long range, the unpredictability of their launch sites increases their lethality. Also contributing to their lethality are the methods of homing in on their targets. Most are passive methods, such as infrared. Unlike active radar homing, these missiles provide no warning to the aircraft that it is being tracked until the missile has been launched.
To achieve battlespace dominance, energy flow characterizations of individual platforms and the aggregate battlespace must be developed to adapt and exploit the variable operating conditions. Army Research Laboratory, White Sands Missile Range, New Mexico The future battlefield will be filled with multiple dissimilar energy networks including unmanned and manned vehicular platforms actively engaged in cooperative control and communications capable of overpowering an adversary and dominating the battlespace. This chaotic multi-domain operational environment will be limited by variable operating conditions (mission profiles, terrain, atmospheric conditions), copious amounts of real-time actionable intelligence derived from weapon and sensor suites, and most importantly, the energy capabilities of each platform. To achieve dominance within the battlespace, energy flow characterizations of individual platforms and the aggregate battlespace must be developed with respect to the variable
Although Navy surface ships have a number of means for defending themselves against anti-ship cruise missiles (ASCMs) and anti-ship ballistic missiles (ASBMs), some observers are concerned about the survivability of Navy surface ships in potential combat situations against adversaries, such as China, that are armed with advanced ASCMs and ASBMs. Concern about this issue has led some observers to conclude that the Navy’s surface fleet in coming years might need to avoid operating in waters that are within range of these weapons, or that the Navy might need to move toward a different fleet architecture that relies less on larger surface ships and more on smaller surface ships and submarines. Such changes in Navy operating areas and fleet architecture could substantially affect U.S. military strategy and the composition of the Navy’s shipbuilding expenditures.
The GPS Radio Occultation and Ultraviolet — Colocated (GROUP-C) experiment was originally conceived in 2010 as a CubeSat mission, combining a compact GPS occultation receiver and high-sensitivity far-ultraviolet (FUV) photometer experiment to be flown as a Space Test Program experiment. The concept was to incorporate a commercial off-the-shelf GPS receiver and a small second-generation FUV photometer to replicate the space weather portion of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC/FORMOSAT-3) mission at lower cost. In the same timeframe, the Air Force Space and Missile System Center initiated the Space Environment NanoSatellite Experiment (SENSE) to demonstrate several CubeSat technologies for space environment sensing, which included the Compact Tiny Ionospheric Photometer (CTIP) and the Compact Total Electron Content Sensor (CTECS).
MBDA is one of the leading European manufacturers in the aerospace and armaments sector, specializing in the design of missiles and missile systems for the operational needs of the military. MBDA France’s Bourges site specializes in the manufacturing tactical missile equipment. The company wanted to automate certain processes in small series or even single unit production, by allowing an operator with no programming skills to teach the robotic system, in just a few seconds, the process to be carried out, and then to execute the cycle with complete confidence without human supervision.
BIRD Aerosystems Herzliya, Israel +972 9-972-5700
Rafael Advanced Defense Systems Haifa, Israel 972-73-3324710
Drone warfare has become a critical component of modern-day military conflicts. Militant groups around the world, including those present in Gaza and Lebanon in the Middle East, and in Ukraine, are purchasing relatively inexpensive drones and outfitting them with explosives. These small commercial or “Do-It-Yourself” (DIY) drones can fly long distances and are used to wage asymmetrical warfare including deadly terror attacks on military bases or troops, tracking of troop formations and strategic assets, and even the targeting of top military personnel for assassination. Conventional militaries are increasingly relying on drones, too, to eliminate top terrorists, see over ridge-lines, arrange for more accurate targeting, and adjust mortar fire.
Hypersonic weapons, unlike ballistic missiles, take unpredictable paths and can evade missile defense systems. To counter hypersonic technologies, radar engineers must build systems that have no holes in coverage and can track such high-speed vehicles. The obstacles radar developers face require collaboration across the board and strategic methods of adapting to evolving advancements.
Israel Aerospace Industries (IAI) Ben Gurion International Airport, Israel +972-3-9358509
This Aerospace Information Report (AIR) addresses the subject of aircraft inlet-swirl distortion. A structured methodology for characterizing steady-state swirl distortion in terms of swirl descriptors and for correlating the swirl descriptors with loss in stability pressure ratio is presented. The methodology is to be considered in conjunction with other SAE inlet distortion methodologies. In particular, the combined effects of swirl and total-pressure distortion on stability margin are considered. However, dynamic swirl, i.e., time-variant swirl, is not considered. The implementation of the swirl assessment methodology is shown through both computational and experimental examples. Different types of swirl distortion encountered in various engine installations and operations are described, and case studies which highlight the impact of swirl on engine stability are provided. Supplemental material is included in the appendices. This AIR is issued to bring together information and ideas
S-16 Turbine Engine Inlet Flow Distortion Committee
This research analyzed data gathered from Air Combat Command (ACC) headquarters, as well as data received from the B-52 Systems Program Office and the Electronic Systems Program Office. This data was used to determine if vanishing vendors and parts obsolescence are affecting the supportability of the defensive avionics system on the B-52 and in turn, affecting the mission capability (MC) rate of the platform. Information was also gathered from the 5th and 2d Bomb Wings to acquire user input on the impact of the problem.
Rafael Advanced Defense Systems Haifa, Israel +972-73-335-4714
UVision Air Ltd. Zur Igal, Israel +972 9 749 6822
Bird Aerosystems Herzliya, Israel +972 9 9725700
The deployment of an airborne platform armed with a High Energy Laser (HEL) weapon has been a major challenge for several decades. Attempts in the past included mounting a HEL weapon in large aircraft like a Boeing 747, mainly for strategic missions like defense against tactical ballistic missiles. Despite being very promising in their initial phases, these trial configurations presented various technical and economic issues that resulted in their cancellation.
Items per page:
1 – 50 of 416