Browse Topic: Safety regulations and standards

Items (864)
To provide growing needs of food, clothing and infrastructure for growing population of the world, off-highway vehicles such as those in construction, agriculture and commercial landscaping are moving towards electrification for enhanced precision, productivity, efficiency and sustainability. It has also paved a way to adopt autonomy of these vehicles to address challenges like skilled labor shortage for timely and efficient execution. Despite the tremendous advantages of electrification, be it through completely replacing engines in vehicles or efficiency improvements using hybrid architecture for powertrain and auxiliary power demands, safety remains a significant challenge and critical requirement for off-highway electric vehicles. This paper explains the concept and importance of functional safety in electric off-highway vehicles, and shows how different standards like ISO 26262, ISO 25119, ISO 13849 can be utilized to achieve state of the art in functional safety for different off
Mujumdar, Chaitanya GajananBachhav, KiranDeshpande, Chinmay
Functional safety is driven by number of standards like in automotive its driven by ISO26262, in Aerospace its driven by DO-178C, and in Medical its driven by IEC 60601. Automotive electronic controllers must adhere to state-of-the-art functional safety standard provided by ISO26262. A critical functional safety requirement is the Fault Handling Time Interval (FHTI), which includes the Fault Detection Time Interval (FDTI) and Fault Reaction Time Interval (FRTI). The requirements for FHTI are derived from Failure Mode Effect Analysis (FMEA) conducted at the system level. Various fault categories are analyzed, including electrical faults (e.g., short to battery, short to ground, open circuits), systemic faults (e.g., sensor value stuck, sensor value beyond range), and communication faults (e.g., incorrect CAN message signal values). Controllers employ strategies such as debouncing and fault time maturity to detect these faults. Numerous FDTI requirements must be verified to ensure
Lengare, SunilYadav, VikaskumarShiraskar, Pallavi
The increasing complexity of autonomous off-highway vehicles, particularly in mining, demands robust safety assurance for Electronic/Electrical (E/E) systems. This paper presents an integrated framework combining Functional Safety (FuSa) and Safety of the Intended Functionality (SOTIF) to address risks in autonomous haulage systems. FuSa, based on ISO 19014[1] and IEC 61508[2], mitigates hazards from system failures, while SOTIF, adapted from ISO 21448[3] addresses functional insufficiency and misuse in complex operational environments. We propose a comprehensive verification and validation (V&V) strategy that identifies hazardous scenarios, quantifies risks, and ensures acceptable safety levels. By tailoring automotive SOTIF standards to off-highway applications, this approach enhances safety for autonomous vehicles in unstructured, high-risk settings, providing a foundation for future industry standards.
Kumar, AmrendraBagalwadi, Saurabh
This paper presents updates to a “meta-algorithm” for achieving safer AI driven systems by integrating systems theoretic process analysis, quantitative fault tree analysis, structured generation of safety metrics, and statistical hypothesis testing of metrics between simulation and reality. This paper presents updates to the meta-algorithm after its application in use cases involving commercial autonomous vehicle deployment.
Wagner, MichaelCarlson, NoahDwyer, Chris
The principles of Modular Open Systems Approach (MOSA) encourage the use of other accepted and consensus-based standards for system development. ISO 26262 falls under this category. This paper will detail how this safety standard can be applied in a military environment. Since its release, the MIL-STD-882 System Safety standard has been required in the development of various systems and platforms within the DoD (Department of Defense) and all branches of the armed forces. It provides a general method for identification, classification, and mitigation of hazards through various analyses. The standard, however, provides little definition on specific risk-rated mitigation strategies or risk-level-driven analysis in achieving the safety objectives of the design. This is in part due to the less prescriptive nature of the standard. Though there is no direct alignment between the risk levels of these two standards, this paper will detail how the ISO 26262 safety measures and safety analyses
LaRue, David A.Ruiz, Luis Edwin Rivera
The mobility industry is rapidly advancing towards more autonomous modes of transportation with the adoption of sophisticated self-driving technologies. However, a critical challenge, being the lack of standardized norms for defining, measuring, and ensuring vehicle visibility across various dynamic traffic environments, remains. This lack of awareness of visibility is hindering the development of new regulations for vehicle visibility and the controlled transition to a fully-integrated autonomous future. While current efforts focus on improving sensing technologies like computer vision, LiDAR systems, and sensor fusion development, two key issues remain unresolved: 1 The absence of a representative and realistic three-dimensional color visibility model for measuring and comparing the visibility of complex shapes with large but varying color coated three-dimensional surface areas. 2 The need for enhanced visibility solutions that improve visibility and vehicle detectability for all
Mijnen, Paul W.Moerenburg, Joost H.
This SAE Recommended Practice describes the test procedures for conducting quasi-static cab roof strength tests for heavy-truck applications. Its purpose is to establish recommended test procedures that will standardize the procedure for heavy trucks. Descriptions of the test setup, test instrumentation, photographic/video coverage, and test fixtures are included.
Truck Crashworthiness Committee
Current regulations (e.g., Title 14 of the United States Code of Federal Regulations, or 14 CFR) define design requirements for oxygen system provisions for protection of crewmembers and passengers following emergency events such as in-flight decompression. This aerospace information report (AIR) addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a critical concern for all aircraft, ranging from single-engine types operating above 10000 feet to complex, high-performance aircraft equipped with supplemental oxygen systems. Proper planning ensures compliance with regulations and supports pilot and passenger safety at higher altitudes. This document
A-10 Aircraft Oxygen Equipment Committee
This SAE Information Report applies to structural integrity, performance, drivability, and serviceability of personally licensed vehicles not exceeding 10000 pounds GVWR such as sedans, crossovers, SUVs, MPVs, light trucks, and van-type vehicles that are powered by gas and alternative fuel such as electric, plug-in hybrid, or hybrid technologies. It provides engineering direction to vehicle modifiers in a manner that does not limit innovation, and it specifies procedures for preparing vehicles to enhance safety during vehicle modifications. It further provides guidance and recommendations for the minimum acceptable design requirements and performance criteria on general and specific structural modifications, thereby allowing consumers and third-party payers the ability to obtain and purchase equipment that meets or exceeds the performance and safety of the OEM production vehicle.
Adaptive Devices Standards Committee
The acoustic performance of seven vehicles was evaluated according to Canadian Motor Vehicle Safety Standard 141 (CMVSS 141), which governs minimum required sound levels for hybrid and electric vehicles with a gross vehicle weight rating (GVWR) of 4536 kg (10,000 lb) or less. To better understand the sound profiles of medium-duty electric vehicles (MDEVs) and heavy-duty electric vehicles (HDEVs), the sound emissions of two light-duty electric vehicles (LDEVs), one MDEV, three HDEVs, including an electric transit bus, and one heavy-duty internal combustion engine (HD ICE) vehicle were compared. The sound emissions of the MDEV and HDEVs were quieter than the HD ICE vehicle and comparable to that of the LDEVs equipped with auxiliary speakers. The MDEV with its auxiliary speaker turned off and all three HDEVs without auxiliary speakers met CMVSS 141 requirements in reverse gear and at speeds of 20 km/h and 30 km/h. The MDEV, though not subject to CMVSS 141, failed to meet the minimum sound
Sharma, VinayLarocque-Legros, Marc-AndréWeston, ColeSchulte, AndrewChristenson, MarthaRooney, Anne
This document applies to safety observers or spotters involved with the use of outdoor laser systems. It may be used in conjunction with AS4970.
G-10T Laser Safety Hazards Committee
Recent studies have found that Brain Injury Criteria (BrIC) grossly overpredicts instances of real-world, severe traumatic brain injury (TBI). However, as it stands, BrIC is the leading candidate for a rotational head kinematics-based brain injury criteria for use in automotive regulation and general safety standards. This study attempts to understand why BrIC overpredicts the likelihood of brain injury by presenting a comprehensive analysis of live primate head impact experiments conducted by Stalnaker et al. (1977) and the University of Pennsylvania before applying these injurious conditions to a finite element (FE) monkey model. Data collection included a thorough analysis and digitization of the head impact dynamics and resulting pathology reports from Stalnaker et al. (1977) as well as a representative reconstruction of the Penn II baboon diffuse axonal injury (DAI) model. Computational modeling techniques were employed on a FE Rhesus monkey model, first introduced by Arora et al
Demma, Dominic R.Tao, YingZhang, LiyingPrasad, Priya
Current voluntary standards for wheelchair crashworthiness only test under frontal and rear impact conditions. To help provide an equitable level of safety for occupants seated in wheelchairs under side impact, we developed a sled test procedure simulating nearside impact loading using a fixed staggered loading wall. Publicly available side impact crash data from vehicles that could be modified for wheelchair use were analyzed to specify a relevant crash pulse. Finite element modeling was used to approximate the side impact loading of a wheelchair during an FMVSS No. 214 due to vehicle intrusion. Validation sled tests were conducted using commercial manual and power wheelchairs and a surrogate wheelchair base fixture. Test procedures include methods to position the wheelchair to provide consistent loading for wheelchairs of different dimensions. The fixture and procedures can be used to evaluate the integrity of wheelchairs under side impact loading conditions.
Boyle, KyleHu, JingwenManary, MiriamOrton, Nichole R.Klinich, Kathleen D.
Letter from the Guest Editors
Liang, CiTörngren, Martin
Demonstrating deadline adherence for real-time tasks is a common requirement in all safety norms. Timing verification has to address two levels: the code level (worst-case execution time) and the scheduling level (worst-case response time). Determining which methodology is suited best depends on the characteristics of the target processor. All contemporary microprocessors try to maximize the instruction-level parallelism by sophisticated performance-enhancing features that make the execution time of a particular instruction dependent on the execution history. On multi-core systems, the execution time additionally is influenced by interference effects on shared resources caused by concurrent activities on the different cores, which are not controlled by the scheduling algorithm. In the avionics domain, the new FAA AC 20-193 / EASA AMC 20-193 guidance documents formalize predictability aspects of multi-core systems and derive adequate measures for timing verification. Timing verification
Kaestner, DanielGebhard, GernotHuembert, ChristianPister, MarkusWegener, SimonFerdinand, Christian
In the domain of aircraft certification, Development Assurance is what some would call a useful tool to gain confidence in the development of complex systems, and what others would call a necessary evil. But what does it actually do? Why is it necessary for certification of modern aircraft? What, epistemologically, does it bring to the table? This paper aims to show how Development Assurance (DA) activities, at all levels from aircraft to item, close the epistemological holes created when complex systems are chosen for implementation. It will map the different sources and types of uncertainty encountered in system and aircraft verification and explain how each type is dealt with within a certification context, working from simple mechanical systems up to complex and highly integrated systems using software and airborne electronic hardware and beyond. It will show that Development Assurance, far from being an arbitrary set of activities, systematically brings personal and corporate
Laflin, Cory R.
In the automobile industry, ensuring the safety of automated vehicles equipped with the automated driving system (ADS) is becoming a significant focus due to the increasing development and deployment of automated driving. Automated driving depends on sensing both the external and internal environments of a vehicle, utilizing perception sensors and algorithms, and electrical/electronic (E/E) systems for situational awareness and response. ISO 21448 is the standard for Safety of the Intended Functionality (SOTIF) that aims to ensure that the ADS operate safely within their intended functionality. SOTIF focuses on preventing or mitigating potential hazards that may arise from the limitations or failures of the ADS, including hazards due to insufficiencies of specification, or performance insufficiencies, as well as foreseeable misuse of the intended functionality. However, the challenge lies in ensuring the safety of vehicles despite the limited availability of extensive and systematic
Patel, MilinJung, RolfKhatun, Marzana
Dedicated lanes provide a simpler operating environment for ADS-equipped vehicles than those shared with other roadway users including human drivers, pedestrians, and bicycles. This final report in the Automation and Infrastructure series discusses how and when various types of lanes whether general purpose, managed, or specialty lanes might be temporarily or permanently reserved for ADS-equipped vehicles. Though simulations and economic analysis suggest that widespread use of dedicated lanes will not be warranted until market penetration is much higher, some US states and cities are developing such dedicated lanes now for limited use cases and other countries are planning more extensive deployment of dedicated lanes. Automated Vehicles and Infrastructure: Dedicated Lanes includes a review of practices across the US as well as case studies from the EU and UK, the Near East, Japan, Singapore, and Canada. Click here to access the full SAE EDGETM Research Report portfolio.
Coyner, KelleyBittner, Jason
As Automatic Emergency Braking (AEB) systems become standard equipment in more light duty vehicles, the ability to evaluate these systems efficiently is becoming critical to regulatory agencies and manufacturers. A key driver of the practicality of evaluating these systems’ performance is the potential collision between the subject vehicle and test target. AEB performance can depend on vehicle-to-vehicle closing speeds, crash scenarios, and nuanced differences between various situational and environmental factors. Consequently, high speed impacts that may occur while evaluating the performance of an AEB system, as a result of partial or incomplete mitigation by an AEB activation, can cause significant damage to both the test vehicle and equipment, which may be impractical. For tests in which impact with the test target is not acceptable, or as a means of increasing test count, an alternative test termination methodology may be used. One such method constitutes the application of a late
Kuykendal, MichelleEaster, CaseyKoszegi, GiacomoAlexander, RossParadiso, MarcScally, Sean
With the surge in adoption of artificial intelligence (AI) in automotive systems, especially Advanced Driver Assistance Systems (ADAS) and autonomous vehicles (AV), comes an increase of AI-related incidents–several of which have ended in injuries and fatalities. These incidents all share a common deficiency: insufficient coverage towards safety, ethical, and/or legal requirements. Responsible AI (RAI) is an approach to developing AI-enabled systems that systematically take such requirements into account. Existing published international standards like ISO 21448:2022 (Safety of the Intended Functionality) and ISO 26262:2018 (Road Vehicles – Functional Safety) do offer some guidance in this regard but are far from being sufficient. Therefore, several technical standards are emerging concurrently to address various RAI-related challenges, including but not limited to ISO 8800 for the integration of AI in automotive systems, ISO/IEC TR 5469:2024 for the integration of AI in functional
Nelson, JodyLin, Christopher
Lane-keeping is critical for SAE Level 3+ autonomous vehicles, requiring rigorous validation and end-to-end interpretability. All recently U.S.-approved level 3 vehicles are equipped with lidar, likely for accelerating active safety. Lidar offers direct distance measurements, allowing rule-based algorithms compared to camera-based methods, which rely on statistical methods for perception. Furthermore, lidar can support a more comprehensive and detailed approach to studying lane-keeping. This paper proposes a module perceiving oncoming vehicle behavior, as part of a larger behavior-tree structure for adaptive lane-keeping using data from a lidar sensor. The complete behavior tree would include road curvature, speed limits, road types (rural, urban, interstate), and the proximity of objects or humans to lane markings. It also accounts for the lane-keeping behavior, type of adjacent and opposing vehicles, lane occlusion, and weather conditions. The algorithm was evaluated using
Soloiu, ValentinMehrzed, ShaenKroeger, LukePierce, KodySutton, TimothyLange, Robin
This paper examines the challenges and mechanisms for ensuring Freedom from Interference in Adaptive AUTOSAR-based platforms, with a focus on managing Memory, Timing, and Execution challenges. It explores the robust safety mechanisms in Classic AUTOSAR that ensure Freedom from Interference and the significant challenges in achieving interference-free operation in Adaptive AUTOSAR environments while adhering to ISO26262 standards. The study emphasizes strategies for managing complexities and outlines the multifaceted landscape of achieving interference-free operation. Additionally, it discusses ASIL-compliant Hypervisor, memory partitioning, and Platform Health Management as mechanisms for ensuring safety execution. The paper also raises open questions regarding real-time problems in live projects that are not solved with existing safety mechanisms. Adaptive AUTOSAR plays a crucial role in the development of autonomous and connected vehicles, where functional safety is of utmost
Jain, Yesha
This paper proposes a structured safety framework tailored for the concept phase of Level 2 and Level 3 automated vehicles, addressing the unique challenges posed by these advanced systems. The framework integrates key principles from ISO 26262 and ISO 21448 to create a safety approach that spans hardware reliability, functional safety, and system performance. Central to the framework is a broad analysis that combines methodologies from System-Theoretic Process Analysis (STPA) and Hazard Analysis and Risk Assessment (HARA). This dual approach enables the identification of potential risks arising from both hardware failures and the intended functionalities of the system. The framework further details a combined specification and design process that aligns the strengths of each standard, ensuring robust sensor architectures and reliable decision-making processes. A case study on Adaptive Cruise Control with Lane Keeping is presented to demonstrate the practical implementation of the
Sari, Ayse AysuSoleimani, Morteza
The Automated Mobility Partnership (AMP) is a consortium of industry and academic stakeholders dedicated to advancing Automated Driving Systems (ADS) through a comprehensive suite of tools, datasets, and methodologies. The AMP portal integrates events from over 35 million miles of naturalistic driving data including thousands of annotated crashes and near-crashes and a decade of U.S. police-reported crash data curated by the Virginia Tech Transportation Institute. The portal enables data discovery, visualization, processing, and analysis through secured web access. This paper briefly describes the AMP portal and examines its utility in developing and evaluating the safety of ADS using standardized processes. For the examination, we provide examples based on generic automated driving functions, guided by the Safety of the Intended Functionality (SOTIF) framework. The results show that AMP is instrumental in identifying recorded real-world cases in which the hazardous behavior of a
Antona-Makoshi, JacoboWilliams, VickiAli, GibranSullivan, KayeTerranova, PaoloKefauver, KevinHatchett, Alex
A key challenge for manufacturers of automotive systems, hardware components and software products with no contribution to driving automation is the stringent requirements imposed on elements while being integrated into vehicles with driving automation. The result is increased development cost and low reusability. For such elements or components with no contribution to driving automation, their functions and failure modes remain unchanged when comparing vehicle integration with and without driving automation. The influence of driving automation is not accounted for in the current approach of classifying risk while conducting a Hazard Analysis and Risk Assessment (HARA). Functional safety standards for on-road vehicles rely on human intervention as a parameter to classify risk. Since current safety standards for on-road vehicles are not inclusive of driving automation concepts, classification of risk, based on existing definitions of parameters such as controllability, leads to
Shah, MihirIbarra, Ireri
Hybrid vehicles are driven by the vehicle controller, engine controller and motor controller through torque control, and there may be unexpected acceleration or deceleration of the vehicle beyond the driver's expectation due to systematic failure and random hardware failure. Based on the torque control strategy of hybrid vehicles, the safety monitoring model design of torque control is carried out according to the ISO 26262 safety analysis method. Through the establishment of safety goals and the analysis of safety concepts, this paper conducts designs including the driver allowable torque design for safety monitoring, the driver torque prediction design for safety monitoring, the rationality judgment design of driver torque for safety monitoring, the functional safety degradation design, and the engine start-stop status monitoring, enabling the system to transition to a safe state when errors occur. Firstly, the design of the driver's allowable torque includes the allowable requested
Jing, JunchaoWang, RuiguangLiu, YiqiangHuang, WeishanDai, Zhengxing
Head injuries are a common cause of fatality and long-term impairment in child occupants in motor vehicle crashes. The National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) Anthropomorphic Test Device (ATD) where the head was designed to match pediatric biomechanical impact response targets from previous literature. The purpose of this study was to compare experimental and computational results for eight impact directions at 45-degree increments around the LODC head under two levels of impact severity: low and high, corresponding to nominal velocities of 3.08 mm/ms and 5.42 mm/ms, respectively. The experimental setup consists of the LODC head and neck assembly rigidly attached to a circular fixture plate and a hemispherical-shaped impactor 76.2 mm in diameter. The acceleration and angular velocity responses were measured and computed from the LODC finite element (FE) head CG and compared against the experimental data. Experimental
Challa, AbhishiktNoll, Scott
Peak upper and lower neck load data from rear impact crash testing were reviewed, aggregated, and analyzed from over 1,800 tests of existing peer-reviewed literature and research as well as available testing conducted by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). Both human volunteers and anthropomorphic test devices (ATDs) were subjects of the reviewed studies and testing. Peak upper and lower neck axial forces (compression and tension), sagittal shear forces, and sagittal moments (flexion and extension) from available crash testing were reported and analyzed as functions of measured change in velocity (delta-V) ranging from approximately 3 to 60 km/h (1.9 to 37 mph). This load data was then further analyzed for possible trends amongst various testing conditions, such as seat type, ATD used, and subject seating position within the vehicle chassis and seat to develop a simple linear model. The linear regressions
Kazmierczak, AlexUmale, SagarVisalli, AlyssaWebb, EllaKashdan, AryehRandles, BryanWelcher, Judson
Advanced driver assistance systems (ADAS) and automated driving systems (ADS) continue to expand into the market at a rapid pace. As improved (i.e., next generation) versions of these systems become available, they will continue to face many challenges in their implementation and benefits for safety and driving operations. The solution will involve many parties, including road safety professionals and researchers who see the potential in these systems but may have difficulties keeping up with them, and safety advocates who are calling for these systems to achieve higher levels of safety now. The Challenges of Next-gen ADAS and ADS and Related Vehicle Safety Topics explores these challenges that will fall on the National Highway Traffic Safety Administration (NHTSA) and automakers as they balance costs and benefits; establish reasonable regulations and standards; and determine how to improve, test, deliver, and use these systems successfully. Perhaps the most formidable challenge will
Chalmers, Seth
This study presents a detailed review of a contemporary safety concept for a smart cluster, comprising a multipurpose display and a head unit. It focuses on elucidating the fundamental regulatory requirements for smart clusters within the frameworks of the United States and the European Union, and draws connections to their functional safety requirements and concepts. The article explores a range of safety mechanisms and architectures designed to implement these proposed functional safety requirements. For each mechanism, we provide an in-depth analysis of its benefits and drawbacks, as well as a thorough explanation of its operational logic. This comprehensive evaluation offers valuable insights into developing safer and more efficient smart clusters in line with international regulatory standards.
Anisimov, ValentinBabaev, IslamShinde, Chaitanya
This standard documents what is required to execute a System Theoretic Process Analysis (STPA) of safety-critical products or systems in all industries. This standard defines the terminology, the steps in using STPA, the activities flow, and the expected deliverables. This standard may be used when addressing compliance with contractual or regulatory requirements regarding risk assessments, safety assessments, development assurance, system security engineering, or other similar requirements as appropriate. In addition, this standard can be used to demonstrate that an effective STPA evaluation has been conducted when compliance is not of paramount concern. This standard is applicable to a broad set of uses including, but not limited to, corporate product development processes, organizational processes, regulatory groups, supplier processes, defense programs (e.g., government awards a contract to a company and the contract mandates STPA), defense program office (e.g., government safety
Functional Safety Committee
Driving Change: NHTSA’s Role in Advancing Road Safety
Hardy, Warren N.
The swift and relentless progression of drone technology has ushered in novel opportunities within the realm of urban logistics, especially for the potential of drones to modify last-mile delivery and improve customer fulfillment through mobile application integration, offering the potential for delivery systems that are both efficient and environmentally sustainable. This development is not just a technological leap but a transformative shift in how goods are moved within urban spaces, potentially reducing traffic congestion and emissions from traditional vehicles. Nevertheless, the safety issues of drone flights in cities are becoming increasingly serious, and the accountability related to drone accidents is not clear, raising concerns in society regarding the use and safety of drones. Therefore, to fully utilize the potential of drones in urban logistics, the incorporation of drones into the urban airspace environment necessitates the establishment of a strong regulatory and policy
Ma, JieYang, JunjieDiao, WeileDu, YilingChen, Weiqi
Scenario-based testing has become a central approach of safety verification and validation (V&V) of automated driving. The standard ISO 21448: Safety of the intended functionality (SOTIF) [1] proposes triggering conditions (e.g., an occluded traffic sign) as a new aspect to be considered to organize scenario-based testing. In this contribution, we discuss the requirements and the strategy of testing triggering conditions in an iterative, SOTIF-oriented V&V process. Accordingly, we illustrate a method for generating test scenarios for evaluating potential triggering conditions. We apply the proposed method in a two-fold case study: We demonstrate how to derive test scenarios and test these with a virtual automated driving system in simulation. We provide an analysis of the testing result to show how triggering condition-based testing facilitates spotting the weakness of the system. Besides, we exhibit the applicability of the method based on multiple triggering conditions and nominal
Zhu, ZhijingPhilipp, RobinHowar, Falk
In the context of advancing automotive electronic systems, ensuring functional safety as per ISO 26262 standards has become of primary importance. This paper presents the development of an AUTOSAR-compliant Software Component (SWC) applied to ISO 26262 applications. Using MATLAB/Simulink, we design and simulate a SWC that operates within the AUTOSAR architecture, focusing on fault detection and activation of safety mechanisms. The SWC is built to monitor specific system parameters and operational anomalies. Upon detecting a fault, it triggers predefined safety mechanisms to mitigate risks and ensure system integrity. The simulation focus on capability to accurately identify faults and execute safety measures effectively, thus demonstrating a practical approach to enhance automotive system safety implementation and its reuse. This paper not only highlights the importance of ISO 26262 in the automotive industry but also illustrates the feasibility of developing and integrating safety
Santiago, Frederico Victor Scoralickdos Santos Machado, ClebersonImbasciati, HenriqueCosta, Silvio Romero Alves
Items per page:
1 – 50 of 864