Browse Topic: Airworthiness
Aerospace is an industry where competition is high and the need to ensure safety and security while managing costs is foremost. Stakeholders, who gain the most by working together, do not necessarily trust each other. Changing backbone technologies that drive enterprise systems and secure historical records does not happen quickly (if at all). At best, businesses adapt incrementally, building customized applications on top of legacy systems. The complexity of these legacy systems leads to duplication of efforts and data storage, making them very inefficient. Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the aerospace industry. The industry has been slow to adopt the technology even though experts agree that it has real potential to revolutionize the global supply chain—including
The extent of automation and autonomy used in general aviation (GA) has been steadily increasing for decades, with the pace of development accelerating recently. This has huge potential benefits for safety given that it is estimated that 75% of the accidents in personal and on-demand GA are due to pilot error. However, an approach to certifying autonomous systems that relies on reversionary modes limits their potential to improve safety. Placing a human pilot in a situation where they are suddenly tasked with flying an airplane in a failed situation, often without sufficient situational awareness, is overly demanding. This consideration, coupled with advancing technology that may not align with a deterministic certification paradigm, creates an opportunity for new approaches to certifying autonomous and highly automated aircraft systems. The new paths must account for the multifaceted aviation approach to risk management which has interlocking requirements for airworthiness and
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
The process detailed within this document is generic and applies to the entire end-to-end health management capability, covering both on-board and on-ground elements, in both commercial and military applications throughout their lifecycle. This ARP addresses a gap in guidance related to usage of ground-based health management equipment for airworthiness credit, ensuring a level of integrity commensurate with the potential aircraft-level consequences of the relevant failure conditions. The practical application of this standardized process is detailed in the form of a checklist. The on-board elements described here are typically the source of the data acquisition used for off-board analysis. The on-board aspects relating to airworthiness and/or safety of flight, e.g., pilot notification, are addressed by existing guidance and policy documents. If a proposed health management capability for airworthiness credit involves modification of the on-board systems, the substantiation of those
As autonomous-drone and air-taxi concepts debut, legal hurdles will need to be cleared before the skies are automated. Autonomous vehicle technology literally has nowhere to go but up. At CES '19, more than 170 exhibitors showed aerial drones of various shapes and sizes. Potential use cases for these devices appear to be limitless, but technical, legal and regulatory hurdles must first be overcome. Drones are categorized by vehicle weight. The small devices weighing between 0.55 and 55 pounds (.25 kg to 25 kg) are known as Unmanned Aircraft Systems (UAS) and are lightly regulated. Drones exceeding 55 lb are regulated as traditional aircraft. Operators must obtain proper registration, licenses and certification for airworthiness
Limited to the commercial aerospace industry where a request is made for a PO to have Direct Delivery Authorization (DDA), which includes an Appropriate Arrangement (AA) between the PO and the Design Organization (DO). In this process the DO is responsible for ensuring the continuous updating of design and airworthiness data to the PO, whilst the PO is responsible for assurance that the manufactured article conforms to approved design and airworthiness data. The PO is responsible to provide airworthiness release documentation
This SAE Aerospace Standard (AS) specifies the testing methods to be used to substantiate performance of air cargo containers, pallets and nets (Unit Load Devices) for airworthiness approval in accordance with NAS 3610 or AS36100
In recent year, with the booming of Chinese economy and domestic civil air transportation market, China's aircraft manufacturers have been trying to develop their own commercial aircraft and changing from the subcontracting-manufacturer to aircraft developer, which turned to be a very hard task. One of the main challenges in front of China's aircraft manufacturers and airborne equipment suppliers is how to apply the airworthiness standards, such as ARP4754A, ARP4761, DO-178B(C) and DO-254, etc, into their engineering practice. Chinese companies are struggling in improving their capabilities to satisfy certification requirements and are making some remarkable progress these years. The paper first introduces the current status of Chinese aviation industry, and then the challenges to China's airborne equipment suppliers are analyzed. Based on these, the customization considerations of airworthiness standards and ARP4754 Practice in Chinese context are discussed
The target of this paper is to describe the SHM project developed at CIRA. In order to achieve the low weigh target in the MALE UAV structures, the SHM project has the target to setup a system that, being able to evaluate the current state of the structure, will enable minus conservative assumption in the composite structural design. A lamb wave based procedure has been developed in order to analyze the presence of a barely visible impact defect (BVID). The techniques for the damage detections of composite and metallic structures have been developed through extensive numerical-experimental analysis based on lambwave investigation by using piezoelectric sense- actuators. The use of SHM technology and methodology has shown the possibility to have a significant reduction in the structural weight. The technology has achieved a TRL level between 4 and 5 and in order to achieve a higher TRL a test on a component in relevant environment is planned at the end of 2014. The application on MALE
Avionics equipment, especially for safety-critical systems, is developed by means of a series of design steps, propagating and refining requirements through a number of hierarchical levels, from the aircraft level, through system and sub-system levels, down to equipment, subassemblies and individual components (see SAE ARP4754A [11]). At each development level, accompanying safety assessments (e.g. per SAE ARP4761 [12]) are performed to derive safety requirements which ensure compliance to the overall safety requirements determined by the aircraft and systems functional hazard assessments (FHAs). The safety related requirements of all development levels flow through the process down into the individual equipment specifications and are ultimately implemented in the equipment design where the design data is approved for the certificated aircraft (or engine) type. The equipment production process builds the equipment according to this approved design data. Safety assessment methodologies
This paper presents a review of the flight deck and cabin fire and smoke incidents reported to the Canadian airworthiness authorities over a ten year span. The fire and smoke related diversions are categorized to identify areas where efforts could be increased to improve safety. The costs of diversions are estimated to identify areas where operators could reduce costs by seeking technologies to reduce the number of diversions without any impact on safety. Only twenty-eight investigation reports into fire and smoke incidents onboard aircraft have been published over the past three decades. These reports are not sufficient to identify areas where operators can reduce their operating costs. The Canadian airworthiness authorities received over 1,000 smoke and fire incidents from the years 2001 to 2010, of which, over 680 reported fire and smoke in the flight deck and cabin compartments for various makes and models of aircraft. Some of these flight deck and cabin incidents were related to
This paper illustrates the development of an Object-Oriented Bayesian Network (OOBN) to integrate the safety risks contributing to a notional “lost link” scenario for a small UAS (sUAS). This hypothetical case investigates the possibility of a “lost link” for the sUAS during the bridge inspection mission leading to a collision of the sUAS with the bridge. Hazard causal factors associated with the air vehicle, operations, airmen and the environment may be combined in an integrative safety risk model. With the creation of a probabilistic risk model, inferences about changes to the states of the mishap shaping or causal factors can be drawn quantitatively. These predictive safety inferences derive from qualitative reasoning to conclusions based on data, assumptions, and/or premises and enable an analyst to identify the most prominent causal factor clusters. Such an approach also supports a mitigation portfolio study and assessment. An OOBN approach facilitates decomposition at the
This document discusses the development of aircraft systems taking into account the overall aircraft operating environment and functions. This includes validation of requirements and verification of the design implementation for certification and product assurance. It provides practices for showing compliance with the regulations and serves to assist a company in developing and meeting its own internal standards by considering the guidelines herein. The guidelines in this document were developed in the context of Title 14 Code of Federal Regulations (14CFR) Part 25 and European Aviation Safety Agency (EASA) Certification Specification (CS) CS-25. It may be applicable to other regulations, such as Parts 23, 27, 29, 33, and 35 (CS-23, CS-27, CS-29, CS-E, CS-P). This document addresses the development cycle for aircraft and systems that implement aircraft functions. It does not include specific coverage of detailed software or electronic hardware development, safety assessment processes
Limited to the Commercial Aerospace industry where a request is made for a Production Organization (PO) to have Direct Delivery Authorization (DDA), which includes an Appropriate Arrangement (AA) between the PO and the Design Organization (DO). In this process the DO is responsible for ensuring the continuous updating of design and airworthiness data to the PO, whilst the PO is responsible for assurance that the manufactured article conforms to Approved Design and Airworthiness Data. The PO is responsible to provide airworthiness release documentation
This SAE Aerospace Standard (AS) defines the minimum performance requirements and test parameters for air cargo unit load devices requiring approval of airworthiness for installation in an approved aircraft cargo compartment and restraint system that complies with the cargo restraint and occupant protection requirements of Title 14 CFR Part 25, except for the 9.0 g forward ultimate inertia force of § 25.561 (b)(3)(ii
Items per page:
50
1 – 50 of 107