Browse Topic: Adaptive cruise control
As vehicles are becoming more complex, maintaining the effectiveness of safety critical systems like adaptive cruise control, lane keep assist, electronic breaking and airbag deployment extends far beyond the initial design and manufacturing. In the automotive industry these safety systems must perform reliably over the years under varying environmental conditions. This paper examines the critical role of periodic maintenance in sustaining the long-term safety and functional integrity of these systems throughout the lifecycle. As per the latest data from the Ministry of Road Transport and Highways (MoRTH), in 2022, India reported a total of 4.61 lakh road accidents, resulting in 1.68 lakh fatalities and 4.43 lakh injuries. The number of fatalities could have been reduced by the intervention of periodic services and monitoring the health of safety critical systems. While periodic maintenance has contributed to long term safety of the vehicles, there are a lot of vehicles on the road
In the Indian context, introduction of ADAS can play a positive role in improving road safety by assisting the driver and preventing unsafe driver behaviour. Technologies like Automated Emergency Braking (AEB), Lane Keep System, Adaptive Cruise Control, Driver Drowsiness Detection, Driver Alcohol detection etc., if deployed safely and used in a safe manner can help prevent many of the current road deaths in India. Safe deployment and safe use of such ADAS technologies require the systems to operate without failure within their operational design domains (ODD) and not surprise the drivers with sudden or unpredictable failures, to help develop their trust in the technology. As a result, identifying test scenarios remain a key step in the development of Advanced Driver Assistance Systems (ADAS). This remains a challenge due to the large test space especially for the Indian context due to the unpredictable traffic behaviour and occasional road infrastructure. In this paper, we introduce a
Simulation has become mission-critical for ADAS development. Model-based systems engineering can integrate modeling and simulation from the start of the design process. Advanced Driver Assistance Systems (ADAS) are transforming vehicle safety, acting as the bridge between conventional driving and full autonomy. From adaptive cruise control to emergency braking and blind-spot detection, these technologies rely on a dense network of radar sensors, antennas, electronic control units and software. What unites them is the need for precise functionality under complex real-world situations. Achieving full reliability requires more than testing on the road; it demands a virtual approach grounded in simulation. Simulation has become mission-critical for ADAS development. As new vehicles integrate dozens of sensors into tightly constrained spaces, even subtle design decisions can affect system performance. Radar solutions, in particular, present unique challenges, especially as vehicle surfaces
Autonomous vehicles utilise sensors, control systems and machine learning to independently navigate and operate through their surroundings, offering improved road safety, traffic management and enhanced mobility. This paper details the development, software architecture and simulation of control algorithms for key functionalities in a model that approaches Level 2 autonomy, utilising MATLAB Simulink and IPG CarMaker. The focus is on four critical areas: Autonomous Emergency Braking (AEB), Adaptive Cruise Control (ACC), Lane Detection (LD) and Traffic Object Detection. Also, the integration of low-level PID controllers for precise steering, braking and throttle actuation, ensures smooth and responsive vehicle behaviour. The hardware architecture is built around the Nvidia Jetson Nano and multiple Arduino Nano microcontrollers, each responsible for controlling specific actuators within the drive-by-wire system, which includes the steering, brake and throttle actuators. Communication
Exactly when sensor fusion occurs in ADAS operations, late or early, impacts the entire system. Governments have been studying Advanced Driver Assistance Systems (ADAS) since at least the late 1980s. Europe's Generic Intelligent Driver Support initiative ran from 1989 to 1992 and aimed “to determine the requirements and design standards for a class of intelligent driver support systems which will conform with the information requirements and performance capabilities of the individual drivers.” Automakers have spent the past 30 years rolling out such systems to the buying public. Toyota and Mitsubishi started offering radar-based cruise control to Japanese drivers in the mid-1990s. Mercedes-Benz took the technology global with its Distronic adaptive cruise control in the 1998 S-Class. Cadillac followed that two years later with FLIR-based night vision on the 2000 Deville DTS. And in 2003, Toyota launched an automated parallel parking technology called Intelligent Parking Assist on the
Letter from the Focus Issue Editors
Startups are famous for moving quickly. Vinfast may want to slow things down. It was only 2019 when the Vietnamese company built its first cars, rebodied versions of gasoline BMWs that became hits in its home market. Vinfast speedily developed four electric SUVs, including the inaugural VF8 that SAE Media drove in southern California. At the same time, a cargo ship docked near San Francisco, carrying nearly 2,000 VF8s for customers in California and Canada. The next day, Vinfast announced plans to go public via a SPAC merger. And Vinfast recently broke ground on a $4 billion factory in North Carolina, targeting 150,000 units of annual capacity and more than 7,000 jobs.
Items per page:
50
1 – 50 of 273