Browse Topic: Turbojet engines

Items (145)
Emissions and effects of climate change have prompted study into fuels that reduce global dependence on traditional fuels. This study seeks to investigate engine performance, thermochemical properties, emissions, and perform NVH analysis of Jet-A and S8 using a single-stage turbojet engine at three engine speeds. Experimental Jet-A results were used to validate a CFX simulation of the engine. Engine performance was quantified using thermocouples, pressure sensors, tachometers, flow meters, and load cells fitted to the engine. Emissions results were collected using an MKS Multigas Emissions Analyzer that examined CO, CO₂, H₂O, NOx, and THC. NVH analysis was conducted using a multifield, free-field microphone, and triaxial accelerometer. This study found that Jet-A operates at higher temperatures and pressures than S8, and S8 requires higher fuel flow rates than Jet-A, leading to poorer efficiency and thrust. S8 produced stronger vibrations over 5 kHz compared to Jet-A. S8 showed a
Soloiu, ValentinMcafee, JohnIlie, MarcelRowell, AidanWillis, JamesDillon, Nicholas
This SAE Aerospace Recommended Practice (ARP) describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEM’s contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities
EG-1E Gas Turbine Test Facilities and Equipment
This document defines and illustrates the process for determination of uncertainty of turbofan and turbojet engine in-flight thrust and other measured in-flight performance parameters. The reasons for requiring this information, as specified in the E-33 Charter, are: determination of high confidence aircraft drag; problem rectification if performance is low; interpolation of measured thrust and aircraft drag over a range of flight conditions by validation and development of high confidence analytical methods; establishment of a baseline for future engine modifications. This document describes systematic and random measurement uncertainties and methods for propagating the uncertainties to the more complicated parameter, in-flight thrust. Methods for combining the uncertainties to obtain given confidence levels are also addressed. Although the primary focus of the document is in-flight thrust, the statistical methods described are applicable to any measurement process. The E-33 Committee
E-33 In Flight Propulsion Measurement Committee
This article presents one approach to the mathematical modeling and analysis of a turbojet engine with the primary goal of defining the transfer function and simulation model. Extensive research on turbojet engine dynamic parameters in the time and frequency domains has been presented. The turbojet engine transfer function was defined based on the operation characteristics and experimental test data, which included fuel flow, turbine rotation speed, and exhaust gas temperature. For the turbojet engine, where the turbine rotation speed was defined as a controlled parameter, fuel flow was used as a control parameter. The total gain of the control object and the time constant parameters were determined as nonlinear functions, which primarily depend on turbojet engine mechanical characteristics and thermodynamic processes. Using the Simulink digital simulation platform, a dynamic turbojet engine simulation was performed. In limited operational conditions on the ground test cell, turbojet
Novakovic, Neno
In conventional turbojet engine the turbine power is being utilized to rotate the compressors whereas in the Hybrid air breathing propulsion system, an electric motor will be used to give power input to rotate the compressor. So, the space available without a turbine could be used to accommodate a contra-rotating compressor where alternative blade rows rotate in a counter direction. Previous studies show the contra-rotating compressors are superior to conventional ones. The objective of the present work is to design a contra-rotating compressor and to numerically analyse the effects of rotational speed of rotors and inlet Mach number on the performance of the same. Numerical simulations are performed for different rotational speed values of rotors ranging from 5000 RPM to 15000 RPM and with four inlet Mach numbers starting from 0.5 to 0.8. It is found that the pressure ratio of the compressor increases with the rotational speed of the rotors and the increment is more pronounced when
Senthilkumar, SundararajJambulingam, SanjayJambulingam, Bharanitharan
This SAE Aerospace Information Report (AIR) describes procedures for calculating fuel consumption for civil jet airplanes through all modes of operation for all segments of a flight. Turboprop and piston airplanes, as well as helicopters or unconventional aircraft, are not included in this AIR. The principle purpose of these procedures is to assist model developers in calculating airplane fuel consumption in a consistent and accurate manner that can be used to address various environmental assessments including those related to policy decisions and regulatory requirements. This AIR is intended to directly support the emission calculations documented in AIR5715. The models described in this AIR are intended to be used from the start of the takeoff roll to the end of the ground roll; taxi fuel consumption models are not included. If modelers have access to higher fidelity methods, they should use those methods in lieu of the ones in this AIR
A-21 Aircraft Noise Measurement Aviation Emission Modeling
Turbojet rotors operate at high angular speeds and undergo intense dynamic loads in operation. Therefore, it is important to evaluate the dynamic behavior of this type of system still in the design phase. In this work, the transverse vibrations of a rotor-bearing assembly of a low-powered aeronautical turbine are analyzed using a finite element model that considers the shaft as flexible and the various compressor and turbine discs as point masses. The influence of the speed of rotation on the variation in the stiffness of the rolling bearings as well as on the damping of the squeeze film dampers is taken into account. Classic results of rotor dynamics (unbalance response, Campbell diagram, bearing efforts) are obtained. The work was carried out in routines developed using numerical computing software
de Lima, Sâmela Fernandes PereiraSouto, Carlos d’Andrade
The aircraft jet engine is one of the most complex multivariable systems with multiple inputs and multiple outputs. To attempt to optimize control functions or to address diagnostic problems, a detailed knowledge of all jet engine design parameters and performances is required. Although jet engines have been around for almost a century, there are only a few companies in the world presently designing and manufacturing them; as such these companies possess detailed knowledge of all relevant design characteristics and performance parameters. In the event where jet engine technical details are unknown, or only a few of them are known from manufacturer’s catalogues, the challenge becomes how to calculate and extrapolate critical performance parameters based on only fuel flow, jet exhaust temperature and total thrust. The brief engineering concept of calculation steps presented herein has the goal of identifying unknown turbojet engine parameters and design characteristics based on limited
Novakovic, Neno
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities
EG-1E Gas Turbine Test Facilities and Equipment
“An Assessment of Planar Waves” provides background on some of the history of planar waves, which are time-dependent variations of inlet recovery, as well as establishing a hierarchy for categorizing various types of planar waves. It further identifies approaches for establishing compression-component and engine sensitivities to planar waves, and methods for accounting for the destabilizing effects of planar waves. This document contains an extensive list and categorization (see Appendix A) of references to aid both the newcomer and the practitioner on this subject. The committee acknowledges that this document addresses only the impact of planar waves on compression-component stability and does not address the impact of planar waves on augmenter rumble, engine structural issues, and/or pilot discomfort
S-16 Turbine Engine Inlet Flow Distortion Committee
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities
EG-1E Gas Turbine Test Facilities and Equipment
This document discusses, in broad general terms, typical present instrumentation practice for post-overhaul gas turbine engine testing. Production engine testing and engine development work are outside the scope of this document as they will typically use many more channels of instrumentation, and in most cases will have requirements for measurements that are never made in post-overhaul testing, such as fan airflow measurements, or strain measurements on compressor blades. The specifications for each parameter to be measured, in terms of measurement range and measurement accuracy, are established by the engine manufacturers. Each test cell instrument system should meet or exceed those requirements. Furthermore, each instrument system should be recalibrated regularly, to ensure that it is still performing correctly
EG-1E Gas Turbine Test Facilities and Equipment
This specification covers a carbon soil and paint remover compound in the form of a liquid
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers an acidic oxide remover compound in the form of a ready-to-use liquid, liquid concentrate, or water-soluble powder for dilution with water or for dilution with mineral acid as defined by the compound manufacturer
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers a strongly alkaline scale conditioner in the form of a liquid or a water-soluble powder
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers an inhibited phosphoric acid in the form of a liquid concentrate or a water soluble powder for dilution with water
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers an alkaline permanganate oxide conditioner in the form of a water-soluble powder or a liquid for dilution with water
AMS J Aircraft Maintenance Chemicals and Materials Committee
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept
AE-5B Aircraft and Engine Fuel and Lubricant Sys Components
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. Model integration is typically divided into two categories: model exchange and model co-simulation. Of these two categories, model co-simulation is typically regarded as the more complex and difficult to implement. Co-Simulation provides the ability to integrate models between different toolsets or incompatible versions of the same software. Additionally, it provides the capabilities for real-time simulations and hardware-in-the-loop test scenarios. This paper reviews some of the common co-simulation data communication methods including pipes and file input/output. The differences between serial and parallel, aka synchronous and asynchronous, communication patterns are also discussed. A simple turbofan model was developed to
Krouse, CharlesNelson-Weiss, Brendan
This document describes a method to correct engine thrust, measured in an indoor test cell, for the aerodynamic effects caused by the secondary airflow induced in the test cell by the engine operating in an enclosed environment in close proximity to an exhaust duct. While it is not recommended to be used to replace test cell correlation, it does provide a means to verify an existing thrust correlation factor
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines, and particularly for those who might be interested in investigating steady-state performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of numerical modeling and simulation. It is not the intent of this standard to provide specific test cell design recommendations, which are covered in the reference documentation
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Aerospace Recommended Practice (ARP) defines lightning strike zones and provides guidelines for locating them on particular aircraft, together with examples. The zone definitions and location guidelines described herein are applicable to Parts 23, 25, 27, and 29 aircraft. The zone location guidelines and examples are representative of in-flight lightning exposures
AE-2 Lightning Committee
This document is offered to provide state-of-the-art information about design factors that must be considered in the design of new or significantly modified engine test cells used to test propeller equipped turboprop engines in either QEC or bare engine configurations. The report does not address design considerations for test cells designed to test turboprop engines with dynamometer type load absorption devices because they are essentially tested as turboshaft engines. Design considerations for those test cells are presented in AIR4989, Reference 2.1
EG-1E Gas Turbine Test Facilities and Equipment
This document discusses, in broad and general terms, the subject of acoustical considerations in engine test cells. One of the primary purposes of an engine test cell is to control the noise emanating from the operating engine in order to reduce noise in the surrounding facility and community to acceptable levels. This is done by the design and installation of specialized acoustic elements and features, which need to be fully integrated into the overall test cell design. It should be further noted, that the requirements of acoustic control are critical to the proper operation of the engine, safety of plant equipment and personnel, and meeting local and legal noise requirements
EG-1E Gas Turbine Test Facilities and Equipment
This specification covers the requirements for format and outline of contents of operating instructions in published form or in manuscript form suitable for publication
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities
EG-1E Gas Turbine Test Facilities and Equipment
The paper discusses in general terms the activities required to be undertaken or demonstrated during the establishment of the facility such as: the assessment checks prior to forwarding to the end users site for embodiment into the facility system the establishment of the facility such as trial installations of hardware, functionality checking of lifting transportation and access systems, centerline pull checks, pressure testing of fuel and air start systems, flushing of wet systems and electrical continuity checking. the commissioning of the facility such as instrumentation calibrations, engine starts, engine running, assessment of command and control system, assessment of DAS system, aerodynamic and acoustic surveys. The paper will concentrate on the main engineering engine related aspects of the facility and will not necessarily contain information on the construction validation activities such as HVAC, electrical, facility fire system, waste water etc. Risk analysis may be
EG-1E Gas Turbine Test Facilities and Equipment
This report revises ARD50015 document to the AIR format. This report, as was the original, is intended to complement ARP1420C and AIR1419C documents issued by the SAE S-16 Committee on spatial total-pressure distortion. These previous documents addressed only total-pressure distortion and excluded total temperature distortion. The subject of inlet total temperature distortion is addressed in this report with some background and identification of the problem area. The status of past efforts is reviewed, and an attempt is made to define where we are today. Deficiencies, voids, and limitations in knowledge and test techniques for total temperature distortion are identified
S-16 Turbine Engine Inlet Flow Distortion Committee
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Aerospace Information Report (AIR) reviews the precautions that must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples. These are defined in NBS Monograph 125 as nickel-chromium alloy versus nickel-aluminum alloy thermocouples
E-32 Aerospace Propulsion Systems Health Management
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of gas turbine engines and particularly for those who might be interested in upgrading their existing engine test facility to meet the airflow requirements for higher thrust engine models. The intellectual property rights on the material contained in this document are protected by US Patent Number 5,293,775 dated March 15, 1994 assigned to United Technologies Corporation, Hartford, Connecticut, USA. Any individual, or organization, attempting to use the system described in this document should get a clearance from United Technologies Corporation, to avoid any potential liability arising from patent infringement
EG-1E Gas Turbine Test Facilities and Equipment
This Icing Technology Bibliography is a compendium of references from the open literature that were published prior to the original 1987 issuance of the AIR, including both national and foreign sources. Due to the generality of the subject, and the difficulty of fully investigating every available source, the Bibliography in this document is not intended to be complete
AC-9C Aircraft Icing Technology Committee
Document provides information on how military/commercial/gas turbine engine test cell/system users may benefit from this unique Coanda/Refraction concept
EG-1E Gas Turbine Test Facilities and Equipment
This document describes a method to correct engine thrust, measured in an indoor test cell, for the aerodynamic effects caused by the secondary airflow induced in the test cell by the engine operating in an enclosed environment in close proximity to an exhaust duct. While it is not recommended to be used to replace test cell correlation, it does provide a means to verify an existing thrust correlation factor
EG-1E Gas Turbine Test Facilities and Equipment
This specification covers the requirements for format and outline of contents of operating instructions in published form or in manuscript form suitable for publication
E-25 General Standards for Aerospace and Propulsion Systems
ARP876 is intended to provide specific recommended procedures for the prediction of gas turbine jet exhaust system noise sources. Procedures are issued as separate Sections, to allow for future updating as additional methods, consistent with state-of-the-art, become available
A-21 Aircraft Noise Measurement Aviation Emission Modeling
The current pressure for fuel burn savings and increasing performance in the commercial aerospace market demands highly complex engine control systems to optimize fuel consumption throughout the engine operating envelope, as well as meet the regulatory requirements in terms of safety and performance. These conflicting objectives normally lead to trade-off solutions that are difficult to precisely estimate. Therefore some decisions to characterize the engine controller still reside on experience from previous designs and, as a result, add subjectivity and increase the potential for wrong parameter selection. This paper proposes an algorithmic approach to design a turbojet engine controller in a multivariable, two-degree-of-freedom configuration, obtaining H-infinity robust stabilization. It introduces an optimized loop shaping design procedure, with the use of a Genetic Algorithm (GA), to further improve the control system performance, as well as bring the experience applied by
Silva, Douglas F RBarbosa, JoaoAdade Filho, Alberto
Gaseous and particle emission assessments on a 1.15 kN-thrust turbojet engine were conducted at five altitudes in an altitude chamber with Jet A-1 fuel, pure Fischer Tropsch (FT), and two mixed fuels of JP-8 with FT or Camelina-based hydro-processed jet fuels. In general, lower emissions in CO₂, NOx, and particle number as well as higher emissions in CO and THC were observed at higher altitudes compared to lower altitudes. These observations, which were similar for all test fuels, were attributed to the reduced combustion efficiency and temperature at higher altitudes. The use of alternative fuels resulted in lower CO₂ emissions, ranging from 0.7% to 1.7% for 50% to 100% synthetic fuel in the fuel mixture at various altitudes. In terms of CO, the use of 100% FT fuel resulted in CO reduction up to 9.7% at 1525 m altitude and up to 5.9% at 9145 m altitude. Significant reduction in particle diameter, number and mass emission rates were observed with the use of alternative fuels due to the
Chan, Tak W.Cuddihy, KevinChishty, WajidDavison, CraigMcCurdy, MarkBarton, Peter
A single lightweight engine capable of operating over a wide range of Mach numbers from startup to the hypersonic regime is proposed for automobiles and airplanes. Traditional piston engines, turbojet engines, and scram jet engines operate only under a narrower range of conditions. A compression system of colliding super multijets is proposed instead of a traditional turbofan. This ultimate engine system can be extended with a special piston system to achieve an improved fuel consumption rate, while maintaining a low noise level
Naitoh, KenEmoto, TakehiroNakamura, KazushiKainuma, Yuusuke
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test
EG-1E Gas Turbine Test Facilities and Equipment
Items per page:
1 – 50 of 145