Browse Topic: Engine mounts
High-frequency whine noise in electric vehicles (EVs) is a significant issue that impacts customer perception and alters their overall view of the vehicle. This undesirable acoustic environment arises from the interaction between motor polar resonance and the resonance of the engine mount rubber. To address this challenge, the proposal introduces an innovative approach to predicting and tuning the frequency response by precisely adjusting the shape of rubber flaps, specifically their length and width. The approach includes the cumulation of two solutions: a precise adjustment of rubber flap dimensions and the integration of ML. The ML model is trained on historical data, derived from a mixture of physical testing conducted over the years and CAE simulations, to predict the effects of different flap dimensions on frequency response, providing a data-driven basis for optimization. This predictive capability is further enhanced by a Python program that automates the optimization of flap
Due to stringent emission norms, all OEMs are shifting focus from Internal combustion engine (ICE) to Electric vehicle (EV). NVH refinement of EVs is challenging due to less background noise in EVs in comparison with ICE vehicles. Motor whine noise is perceived inside cabin till the speed of 20 kmph. Vehicle is powered by electric powertrain (EPT). Electric powertrain is connected to the subframe with the help of three powertrain mounts. Subframe is connected to the body with the help of four mounts. With the help of Transfer Path Analysis (TPA), it is identified that the noise is structure borne and the dominant path is identified. By optimizing the stiffness of the EPT mounts, the structure borne noise levels are reduced. But reducing the stiffness of EPT mount deteriorated the road noise levels. The reason behind deterioration of road noise is investigated. The performance of double isolation of EPT is compared with single isolation of EPT with respect to both road and motor noise
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
NVH is of prime importance in buses as passengers prefer comfort. Traditionally vehicle NVH is analysed post completion of proto built however this leads to modifications, increases cost & development time. In modern approach physical validation is replaced by CAE. There are many sources of NVH in vehicle however this article is focused about the methodology to improve NVH performance of bus by analysing and improving the stiffness and mobility of various chassis frame attachment points on which source of vibrations are mounted or attached. In this study chassis frame attachment stiffness of Engine mounts and propeller shafts is focused.
With the advancement of regulatory norms in automobile industry, there is a challenge to meet performance efficiency targets, especially with a lightweight platform, while providing superior driving experience to customers. The shift towards weight optimization, makes the vehicle structure more susceptible to transfer a diverse range of noise and vibrations through body. Although most undesirable noises perceived inside the cabin can be reduced by superior technology engine mounts and NVH packaging, all such solutions lead to cost addition. Intelligent considerations in part design can be used to supplement predictable transfer paths to quell the unwanted vibrations. One such case is of the gear whine noise in certain rpm bands caused by inherent gear meshing frequency coinciding with natural frequency of an engine mounting bracket. This paper demonstrates two methodologies to counter such a phenomenon, either through engine mount bracket natural frequency optimization or addition of a
This Paper has as objective to describe the powertrain mount system and its relation with the Power Hop phenomenon. It will be present the Powertrain mounts stiffness characteristics and how the mounts manage the loads inputs. In this study, we will review a summary about powertrain mounts main characteristics to help the understanding how to establish the static and dynamic characteristics, with the engine torque applied over the system. It will be present how the Powertrain mounts shall manage the loads inputs. As a Case Study, it was applied one small passenger vehicle as hardware. This vehicle presents the powertrain mounts system as pendulum three points configuration. In addition, this vehicle presents the Power Hop phenomenon mainly in Reverse take off flat road. The required load data was collected through load cells installed on the powertrain mount system. The Power Hop phenomenon is mainly impacted by the rear mount, so the load data is related to rear mount direction X. The
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating. This novel methodology for fatigue life calculation involves finding independent load channels and mapping all load history through converting single or multichannel load-displacement history into stress
Items per page:
50
1 – 50 of 676