Browse Topic: Production control

Items (2,245)
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Sahoo, PriyabrataGarg, IshanRawat, SudhanshuNarula, RahulGupta, AnkitBindra, RiteshRao, Akkinapalli VNGarg, Vipin
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
Gruzwalski, DavidMynderse, James
Roller bearings are used in many rotating power transmission systems in the automotive industry. During the assembly process of the power transmission system, some types of roller bearings (e.g., tapered roller bearings) require a compressive preload force. Those bearings' rolling resistance and lifespan strongly depend on the preload set during the installation process. Therefore, accurate preload setting can improve bearing efficiency, increase bearing lifespan, and reduce maintenance costs over the life of the vehicle. A new method for bearing preload measurement has shown potential for high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes
Gruzwalski, DavidMynderse, James
Wind tunnel calibration is necessary for repeatable and reproducible data for all industries interested in their output. Quantities such as wind speed, pressure gradients, static operating conditions, ground effects, force and moment measurements, as well as flow uniformity and angularity are all integral in an automotive wind tunnel’s data quality and can be controlled through appropriate calibration, maintenance, and statistical process control programs. The purpose of this technical paper is to (1) provide a basis of commonality for automotive wind tunnel calibration, (2) help customers and operators to determine the calibration standards best suited for their unique automotive wind tunnel and, (3) complement the American Institute of Aeronautics and Astronautics recommended practice R-093-2003(2018) Calibration of Subsonic and Transonic Wind Tunnels as specifically applied to the automotive industry. This document compiles information from various automotive wind tunnel customers
Bringhurst, KatlynnBest, ScottNasr Esfahani, VahidSenft, VictorStevenson, StuartWittmeier, Felix
Surface roughness is a key factor in different machining processes and plays an important role in ergonomics, assembly process, wear and fatigue life of components. Other factors like functionality, performance and durability of parts are also affected by surface roughness. Although maintaining an optimum surface roughness is a major challenge in many manufacturing industries. Surface roughness during machining depends upon machining parameters such as tool geometry, feed rate, depth of cut, rotational speed, lubrication, tool wear, etc. Tool vibrations during machining also have significant influence in surface roughness. In this work an attempt is made to predict the surface roughness of machined components made by the turning process by using machine learning of tool vibration signals. By varying different machining parameters and keeping other tooling and material properties same, a range of surface roughness values can be obtained. For each condition, corresponding tool vibration
S S, SafeerSadique, AnwarD, Navaneeth
In recent years, Additive Manufacturing (AM), more especially Fused Deposition Modeling (FDM), has emerged as a very promising technique for the production of complicated forms while using a variety of materials. Polyethylene Terephthalate Glycol, sometimes known as PETG, is a thermoplastic material that is widely used and is renowned for its remarkable strength, resilience to chemicals, and ease of processing. Through the use of Taguchi Grey Relational Analysis (GRA), the purpose of this investigation is to improve the process parameters of the FDM technology for PETG material. In order to investigate the influence that several FDM process parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, have on significant outcome variables, such as dimensional accuracy, surface quality, and mechanical qualities, an empirical research was conducted. For the purpose of constructing the regression prediction model, the obtained dataset is used to make
Natarajan, ManikandanPasupuleti, ThejasreeShanmugam, LoganayaganKatta, Lakshmi NarasimhamuSilambarasan, RKiruthika, Jothi
The predictive torque control strategy is a very commonly used model predictive control strategy. At present, the research prospects of PTC in motor control are broad, but there are still certain limitations in the industrial application of PTC. In traditional prediction torque control, due to the inconsistent units of electromagnetic torque and stator magnetic flux, weight factors need to be introduced to balance the control effects of the two. However, due to the cumbersome and time-consuming process of determining weight factors, it is not conducive to industrial promotion. In order to solve the problem of weight factors, this paper studies a new torque prediction control strategy based on stator flux vector angle that can avoid weight factors on the basis of traditional torque prediction control. The overall process of the new strategy is to first derive the relationship between the angle between the stator voltage vector and the stator magnetic flux vector and the electromagnetic
Zhang, DongdongHuang, YasongDu, AnnanLin, Xiaogang
This specification covers requirements for the superfinishing of High Velocity Oxygen/Fuel (HVOF) applied tungsten carbide thermal spray coatings.
AMS B Finishes Processes and Fluids Committee
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
Natarajan, ManikandanPasupuleti, ThejasreeKiruthika, JothiKatta, Lakshmi NarasimhamuSilambarasan, R.
Spot welds are integral to automotive body construction, influencing vehicle performance and durability. Spot welding ensures structural integrity by creating strong bonds between metal sheets, crucial for maintaining vehicle safety and performance. It is highly compatible with automation, allowing for streamlined production processes and increased efficiency in automotive assembly lines. The number and distribution of spot welds directly impact the vehicle's ability to withstand various loads and stresses, including impacts, vibrations, and torsion. Manufacturers adhere to strict quality control standards to ensure the integrity of spot welds in automotive production. Monitoring spot weld count and weld quality during manufacturing processes through advanced inspection techniques such as Image processing by YOLOv8 helps identify the number of spots and quality that could compromise safety. Automating quality control processes is paramount, and machine vision offers a promising
Kadam, Shubham NarayanDolas, AniketMishra, Jagdish
This specification establishes process controls for the repeatable implementation of the CSAM process for the manufacturing of metallic and metal-nonmetal blend components.
AMS AM Additive Manufacturing Metals
Additive Manufacturing (AM) techniques, particularly Fusion Deposition Modeling (FDM), have received considerable interest due to their capacity to create complex structures using a diverse array of materials. The objective of this study is to improve the process control and efficiency of Fused Deposition Modeling (FDM) for Thermoplastic Polyurethane (TPU) material by creating a predictive model using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The study investigates the impact of FDM process parameters, including layer height, nozzle temperature, and printing speed, on key printing attributes such as tensile strength, flexibility, and surface quality. Several experimental trials are performed to gather data on these parameters and their corresponding printing attributes. The ANFIS predictive model is built using the collected dataset to forecast printing characteristics by analyzing input process parameters. The ANFIS model utilizes the learning capabilities of neural networks
Pasupuleti, ThejasreeNatarajan, ManikandanD, PalanisamyA, GnanarathinamUmapathi, DKiruthika, Jothi
This standard establishes requirements for Process Control Methods to sustain product conformity. This includes training, selection of control methods, analysis and improvement of their effectiveness, and subsequent monitoring and control. It applies to all controls documented in the Control Plan. This will include but is not limited to Key Characteristics (KCs) and Critical Items (CIs). This standard aligns and collaborates with the requirements of AS9100, AS9103, AS9145, AS13000, AS13002, AS13003, and AS13004. Commercial-Off-The-Shelf (COTS) items and Standard Catalogue Items (that neither the customer nor supplier hold design authority for) are not included.
G-22 Aerospace Engine Supplier Quality (AESQ) Committee
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12.
A-10 Aircraft Oxygen Equipment Committee
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and broader acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, intending to strengthen process control and minimize defects. Optical emission spectroscopy is employed to study the real-time interactions between the laser and powder bed, melt pool dynamics, material
Raju, BenjaminKancherla, Kishore BabuB S, DakshayiniRoy Mahapatra, Debiprosad
Medical component manufacturing must meet stringent regulations for quality and product consistency, making process control a critical issue with materials, machining, assembly and packaging. This is vitally important with fluid dispensing applications used in the assembly of medical devices, point-of-care testing and near-patient testing products, medical wearables and other life sciences applications, which require accurate and consistent deposition of fluid amounts of UV-cure adhesives, silicones and other fluids in their manufacture.
This paper presents the application of statistical process control (SPC) methods to Windshear, a 180-mph motorsports and automotive wind tunnel equipped with a wide-belt rolling road system. The SPC approach captures the complete variability of the facility and offers useful process performance metrics that are based on a sound statistical framework. Traditional control charts are explored, emphasizing the uniqueness of variability experienced in wind tunnels which includes significant, unexplained short-term and long-term variation compared to typical manufacturing processes. This unique variation is elegantly captured by the three-way control chart, which is applied to estimate the complete process reproducibility with different levels of repeatability of vehicle drag coefficient. The sensitivity of three-way control charts is explored including the evaluation of an alternate group assignment within the same dataset. A practical example is provided evaluating secondary boundary layer
Bringhurst, KatlynnWalter, JoelBest, Scott
The demand for multi-environmental modes of transportation is driven by the overall trend of increasing mobility and the necessity of movement across various alternating environments (land, water, underwater, aerial, and airspace). However, the specific energy density of hydrocarbon fuels cannot ensure efficient operation of power systems for such multi-environmental vehicles. A promising solution to this problem involves the utilization of boron-containing metallized fuels through the creation of specialized fuel supply systems. Based on a general method of optimization synthesis for technical objects, new fuel supply systems were synthesized with different levels of process control and degrees of automation, as well as an adjustable hybrid fuel delivery system that allows the application of components in varying aggregate states. During testing, operational characteristics were determined primarily for the implemented metallic hybrid transformer fuel delivery system. In our view, it
Dudukalov, YuriTernyuk, MykolaHlushkova, DianaBushnov, ValerySorokin, VolodymyrKholodov, Mykhailo
Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD) processes deposit material on all surfaces in a process chamber. Over time, the thickness of these deposits increases to the point that material begins to delaminate, producing gas-phase particulates that negatively impact process yield. Remote and in situ chemical etching processes are used to periodically remove these deposits from chamber walls, maintaining chamber cleanliness.
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts. Data are presented to display the control
Timko, EmilyKing-Steen, LauraInsana, Eric
A battery intelligence pioneer will work with a venerable semiconductor yield-improvement firm in a partnership that promises to drastically accelerate the production ramp for the many new EV battery factories on the horizon. Voltaiq, the battery-analysis experts, and PDF Solutions announced the partnership in late March. Tal Sholklapper, Voltaiq's CEO and cofounder, said the EV battery industry is in sore need of help in reducing the manufacturing development cycle, which can take anywhere from four to 10 years from shovels in the ground to output of a consistent, quality product. “The automotive battery industry is really behind.” he said in an interview with SAE Media. “There is a lot of manual analysis and semi-empirical learning going on,” and that slows the discovery of future problems. He said the partnership had the potential to cut battery factory development time in half.
Clonts, Chris
Case hardening may be defined as a process for hardening a ferrous material in such a manner that the surface layer, known as the case, is substantially harder than the remaining material, known as the core. The process embraces carburizing, nitriding, carbonitriding, cyaniding, induction, and flame hardening. In every instance, chemical composition, mechanical properties, or both are affected by such practice. This testing procedure describes various methods for measuring the depth to which change has been made in either chemical composition or mechanical properties. Each procedure has its own area of application established through proved practice, and no single method is advocated for all purposes. Methods employed for determining the depth of case are either chemical, mechanical, or visual, and the specimens or parts may be subjected to the described test either in the soft or hardened condition. The measured case depth may then be reported as either effective or total case depth
Metals Technical Committee
This specification covers a corrosion and heat-resistant, air-melted, nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
Success in metal additive manufacturing (AM) relies on the optimization of a large set of process parameters to achieve materials whose properties and performance meet design and safety requirements. Despite continuous improvements in the process over the years, the quality of AM parts remains a major concern for manufacturers. Today, researchers are starting to move from discrete geometry-dependent build parameters to continuously variable or dynamically changing parameters that are geometry- and scan-path aware. This approach has become known as “feedforward control.” Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing discusses the origins of feedforward control, its early implementations in AM, the current state of the art, and a path forward to its broader adoption. Click here to access the full SAE EDGETM Research Report portfolio.
King, Wayne
Leveraging the increased use of Structural Adhesive in Automotive Body Structure Design has many proven benefits. It is a well-known method used to enable weight reduction in vehicle design and can also drive more efficient structural performance during dynamic safety events. This is increasingly important as vehicle safety standards increase, and as vehicle mass increases due to electrification. Often the benefits of adhesive use are not fully optimized due to unnecessary design redundancies or process driven redundancies. Design redundancy; using both welds and adhesive, is often included because government safety regulations require very robust validation of structures, and when combined with the use of Process Quality Control methods such as Batch Control and Sampling, can infer confidence in the design and process, but don’t ensure it. This paper proposes a different and unique approach to Product Design and Process Control, which will create an opportunity to eliminate redundancy
Lee, Michael J.
During input tracking, closed-loop performance is strongly influenced by the dynamic of the system under control. Internal and external delays, such as actuation and measurement delays, have a detrimental effect on the bandwidth and stability. Additionally, production controllers are discrete in nature and the sampling time selection is another critical factor to be considered. In this paper we analyze the impact of both transported delay and controller sampling time on tracking performance using an electric machine speed-control problem as an example. A simple linear PI controller is used for this exercise. Furthermore, we show how the PI parameters can be adjusted to maintain a certain level of performance as the delays and sampling times are modified. This is achieved through an optimization algorithm that minimizes a specifically designed cost function.
Rostiti, Cristian
This specification and its detail slash specifications cover the requirements for media to be used in controlled shot peening of metal parts.
AMS B Finishes Processes and Fluids Committee
This specification covers a fluorocarbon elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, molded compression seals, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7379 specification.
AMS CE Elastomers Committee
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Holden, RogerPortsmore, AndyCheetham, SimonChacin, MarcoSelby, Oliver
Ford CEO Jim Farley exposed significant product-development lapses during his company's fourth-quarter-2022 earnings call on February 2. Ford's 4Q profit performance was no-excuses dismal. Its causes, he stated, run deep. So, in front of investors and media, Farley boldly lifted Ford's PD skirt to reveal alarming management and process issues behind the dysfunction. The fire had to be lit. “We didn't know that our wiring harness for Mach-E was 1.6 kilometers longer than it needed to be,” Farley stated on the call. “We didn't know it's 70 pounds heavier and that that's [worth] $300 a battery. We didn't know that we underinvested in braking technology to save on the battery size.” Credit to CNN's Chris Isidore for roping these EV-specific details into a Feb. 3 story.
Brooke, Lindsay
The scope of this document is related to the particular needs of oxygen equipment with regards to packaging and transportation. The document provides guidance for handling chemical, gaseous and liquid oxygen equipment. It summarizes national and international regulations to be taken into account for transportation on land, sea and air and provides information on classification of hazardous material. The aim of this document is to summarize information on packaging and transportation of oxygen equipment. Statements and references to regulations cited herein are for information only and should not be considered as interpretation of a law. Processes to maintain cleanliness of components and subassemblies during processing and assembly or storage of work-in-progress are outside the scope of this document. Guidance on this can be obtained from ARP1176. Rules for transportation and shipment do not cover oxygen equipment installed in an interior monument, e.g., galley unit or in a fuselage
A-10 Aircraft Oxygen Equipment Committee
This SAE Aerospace Information Report (AIR) defines helicopter turboshaft engine power assurance theory and methods. Several inflight power assurance example procedures are presented. These procedures vary from a very simple method used on some normal category civil helicopters, to the more complex methods involving trend monitoring and rolling average techniques. The latter method can be used by small operators but is generally better suited to the larger operator with computerized maintenance record capability.
S-12 Powered Lift Propulsion Committee
Gear transmission error (TE) is one of the internal excitation on transmission system vibration and noise. The vibration analytical model of transmission system was constructed by considering the dynamical characteristics of a gear box, which were verified by comparing the modal frequency and mode shapes between simulation results and experiment data. The vibration and radiated noise of transmission was analyzed by the transmission NVH test data. The mechanism of load conditions, TE, and system resonance influence on transmission system vibration and noise are investigated in details. Based on the vibration analysis model, the effects of pitch error, helix tilt deviation, and radial runout error on gear pair meshing characteristics and system vibration response are studied individual. The analysis results show that with the increase of pitch deviation and radial runout error, the harmonic transmission error of gears increase in varying degrees; the large helix tilt deviation not only
Tao, WeiXiaochun, ZengZhisheng, ZhaoYi, WangZheng, GuangzeHuang, Huang Xiupeng
This specification covers a titanium alloy in the form of preforms and parts produced by electron beam-powder bed fusion (EB-PBF) that are subjected to post-deposition hot isostatic press (HIP). Preforms may require subsequent machining or surface finishing to meet requirements for their intended final part application.
AMS AM Additive Manufacturing Metals
This SAE Aerospace Recommended Practice (ARP) describes a method to measure, track, and characterize the history of powder feedstock when consumed in the production of parts via additive manufacturing (AM). The history captured as part of this ARP includes AM process exposure, feedstock consumption, blending, and losses associated with the totality of the AM workflow. This document also outlines a two-part metric schema for used powder feedstock consequential of its process exposure history. This metric schema also enables aligning risk determination and usage practices for used powder when based on a correlation between tabulated values in the scheme and user-identified metrics. These correlated metrics with schema values may also be used when establishing powder blending workflows or identifying end-of-life for feedstock.
AMS AM Additive Manufacturing Metals
This specification covers a corrosion and moderate heat-resistant steel in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion resistant steel in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion resistant steel in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers the equipment and process requirements for forming or straightening metal parts using Ultrasonically Activated Needle Peening.
AMS B Finishes Processes and Fluids Committee
This specification covers an ethylene propylene rubber in the form of molded rings, molded compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
AMS CE Elastomers Committee
This specification establishes the requirements for computer-monitored shot peening of part surfaces by impingement of media, including metallic, glass, or ceramic shot. Computer-monitored peening is intended to provide a method of process observation, traceability, and response for all process input settings, in real time, during the entire peening process to ensure with objective evidence, the desired process outputs. AMS2430 forms an integral part of this specification.
AMS B Finishes Processes and Fluids Committee
This specification covers cloth woven from high-modulus, continuous, multifilament yarn.
AMS P17 Polymer Matrix Composites Committee
This specification covers procedures for obtaining first-article (preproduction) approval of forgings and the controls to be exercised in producing subsequent production forgings.
AMS E Carbon and Low Alloy Steels Committee
AS81969 covers the general requirements for installing and removal tools for use in installing and removing electrical contacts used in connectors and other electrical and electronic components (see section 6)
AE-8C2 Terminating Devices and Tooling Committee
The purpose of this specification is to establish requirements of a grinding method and to provide grinding parameters that will eliminate or minimize overheating, cracking, high residual tensile stresses, and/or other metallurgical changes that decrease structural integrity of steel parts or chrome plated steel parts (see 8.3). This standard establishes requirements for low stress grinding of martensitic high strength steel heat-treated to 180 ksi (1241 MPa) minimum ultimate tensile strength (UTS) and above, and requirements for low stress grinding of chromium plating applied to such high strength steel.
AMS B Finishes Processes and Fluids Committee
This standard is primarily intended to apply to new parts and products intended to be produced in an on-going production phase, but can also be applied to parts currently in production (e.g., manufacturing, maintenance). The standard is applicable to all production processes that influence the variation of KCs, as well as maintenance and service processes in which KCs are identified. It applies to organizations for assemblies and all levels of parts within an assembly, down to the basic materials including castings and forgings, and to organizations that are responsible for producing the design characteristics of the product. The variation control process begins with product definition, typically stated in the design documentation (e.g., digital model, engineering drawing, specification) which identifies KCs, and leads to a variation management process for those KCs. This process may also be used for producer-identified KCs (e.g., process KCs, additional/substitute product KCs
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This standard has notes/guidance narratives interspersed throughout. These notes/guidance narratives are identified by a header and by text in italics. This standard defines a series of requirements that results in a specific AM machine qualified to produce material (see GN1) in compliance to an aerospace materials specification. The machine control and/or configuration types are discussed in the next sections. The industry (including AIA and ASTM) generally acknowledges that there are three qualification milestones for AM machines; nevertheless, this document will focus only on the initial two stages, namely: Installation Qualification (IQ): Producing objective evidence to show that all key aspects of the process equipment and ancillary system installation adhere to the AM Part Producer’s specification and that the recommendations of the supplier of the equipment are suitably considered; this is tied to a specific machine serial number. Operational Qualification (OQ): Establishing
AMS AM Additive Manufacturing Metals
This specification covers a zinc alloy in the form of die castings.
AMS D Nonferrous Alloys Committee
Items per page:
1 – 50 of 2245