Browse Topic: Welding
Over the past 25 years, the heavy fabrication and construction equipment industry has experienced significant transformation. Driven by a global surge in demand for construction machinery, manufacturers are under increasing pressure to deliver higher volumes within shorter timelines and at competitive costs. This demand surge has been compounded by workforce-related challenges, including a declining interest among the new generation in acquiring traditional manufacturing skills such as welding, heat treatment, and painting. Furthermore, the industry faces difficulties in staffing third-shift operations, which are essential to meet production targets. The adoption of automation technologies in heavy fabrication and construction equipment manufacturing has been gradual and often hindered by legacy product designs that were optimized for conventional manufacturing methods. As the industry transitions toward smart, connected manufacturing environments under the industry 4.0 paradigm, it
Yamaha Motor Engineering Co., Ltd. provides plastic processing technology based on fuel tank press forming technology, and is developing various plastic processing methods, including forging, and developing mold equipment to realize them. This time, the core parts of the YECVT unit mounted on Yamaha Motor Co., Ltd.'s small premium scooter "NMAX" were not made by welding individual parts to each other, but by integrally forming them from a single thick plate using the cold forming method, resulting in lightweight, compact, high-strength, high-precision parts. By incorporating a composite plastic processing method that takes advantage of the characteristics of the material while making full use of analysis technology and mold technology, we were able to develop a composite plastic processing method (plate forging method) that creates new added value and mass produce it. In addition,this development has made it possible to achieve a thickness increase of 1.7 times the standard material
This document is reissued for application to helicopters. It is primarily intended to apply to the engine or engines, but it shall also apply to fire protection of lines, tanks, combustion heaters, and auxiliary powerplants (APU). Post-crash fire protection is also discussed.
Medical tubing is an essential component of countless healthcare applications, from intravenous (IV) and oxygen lines to catheters and diagnostic equipment. These tubes, often made of clear flexible polymers, must be produced to exacting standards: free of contaminants, strong under pressure, and biocompatible. However, the joining process to connect these tubes can introduce significant manufacturing challenges.
This specification covers procedures for tab marking of bare welding wire to provide positive identification of cut lengths and spools.
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing, and SAE
A pacemaker is a small device that helps control your heartbeat so you can return to your normal life. It has three main parts: a pulse generator that creates electrical signals, a controller-monitor that manages these signals, and leads that deliver the signals to the heart. One key benefit of the pacemaker is its strong titanium casing. Titanium is very strong and lightweight, and it is biocompatible, meaning it works well with the body without causing harmful reactions. This metal is highly resistant to corrosion, which helps keep the casing intact and protective even when exposed to bodily fluids.
Climate-neutral aviation requires resource-efficient composite manufacturing technologies and solutions for the reuse of carbon fibers (CF). In this context, thermoplastic composites (TPC) can make a strong contribution. Thermoforming of TPC is an efficient and established process for aerospace components. Its efficiency could be further increased by integration of joining processes, which would otherwise be separate processes requiring additional time and equipment. In this work, an integrative two-step thermoforming process for hollow box structures is presented. The starting point are two organosheets, i.e. fiber-reinforced thermoplastic sheets. First, one of the organosheets, intended for the bottom skin of the uplift structure, is thermoformed. After cooling, the press opens, the organosheet remains in the press and an infrared heater is pivoted in, to locally heat up just the joining area. Meanwhile, a second organosheet, intended for the top skin, is heated and thermoformed and
Not only the use, but also the wearing time of medical wearables continues to increase in modern healthcare. However, to ensure that wearable products do not cause skin irritation, product designers must consider the moisture vapor transmission rate (MVTR) during development. It plays an important role in skin compatibility and wearing comfort — and can be decisively influenced by the right joining technology.
This specification defines the procedures and requirements for joining metals and alloys using the electron-beam welding process.
Parts in automotive exhaust assembly are joined to each other using welding process. When the exhaust is subjected to dynamic loads, most of these weld joints experience high stresses. Hence it should be ensured that the exhaust assembly is designed to meet the requirements of exhaust durability for the estimated life of the vehicle. We also know that all parts used in manufacturing of exhaust system have inherent variations with respect to sheet metal thickness, dimensions and shape. Some parts like flex coupling and isolators have high variations in their stiffness based on their material and manufacturing processes. This all leads to a big challenge to ensure that the exhaust system meets the durability targets on a vehicle manufactured with all these variations. This works aims to evaluate the statistical spread in weld life of an exhaust with respect to inherent variations of its components. For the purpose of variational analysis, a Design of Experiments (DOE) is done where
Mesekon Oy, a Finnish welding manufacturer that produces complex welded steel structures for the marine, energy, and paper industries, needed a flexible and collaborative solution to improve efficiency, reduce defects, and enhance workplace ergonomics by automating repetitive and physically demanding welding operations.
This specification covers a corrosion- and heat-resistant nickel-iron alloy in the form of welding wire.
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
The development of advanced high-strength steels has become essential in the production of lightweight, safe, and more economical vehicles within the context of the automotive industry. Among the advanced high-strength steels, complex phase steels stand out, characterized by their high formability and high energy absorption and deformation capacity. Laser welding is a technique that applies laser using high energy density as a heat source. It has the advantages that the high welding speed and low heat input compared to other welding methods cause a decrease in deformation, and the narrow width of the weld bead and heat-affected zone allows for the welding of complex parts that would be difficult for other welding methods. Based on a study of a complex phase steel, an analysis was made of the microstructures observed by optical microscopy, the grain boundaries and certain phases contained in this microstructure, as well as the microstructures of each area in the laser welding region
Spot welds are integral to automotive body construction, influencing vehicle performance and durability. Spot welding ensures structural integrity by creating strong bonds between metal sheets, crucial for maintaining vehicle safety and performance. It is highly compatible with automation, allowing for streamlined production processes and increased efficiency in automotive assembly lines. The number and distribution of spot welds directly impact the vehicle's ability to withstand various loads and stresses, including impacts, vibrations, and torsion. Manufacturers adhere to strict quality control standards to ensure the integrity of spot welds in automotive production. Monitoring spot weld count and weld quality during manufacturing processes through advanced inspection techniques such as Image processing by YOLOv8 helps identify the number of spots and quality that could compromise safety. Automating quality control processes is paramount, and machine vision offers a promising
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welded and drawn tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness.
This specification covers an aluminum alloy in the form of flash-welded rings 0.062 to 4.499 inches (1.57 to 114.27 mm), inclusive, in radial thickness with cross-sectional areas up to 32 square inches (206 cm2) (see 8.6).
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Items per page:
50
1 – 50 of 2855