Browse Topic: Welding

Items (2,849)
The arc welding process is essential for motorcycle frames, which are difficult to form in one piece because of their complex shapes, because a single frame has dozens of joints. Many of the damaged parts of the frames under development are from welds. Predicting the strength of welds with high reliability is important to ensure that development proceeds without any rework. In developing frames, CAE is utilized to build up strength before prototyping. Detailed weld shapes are not applicable to FE models of frames because weld shapes vary widely depending on welding conditions. Even if CAE is performed on such an FE model and the evaluation criteria are satisfied, the model may fail in the actual vehicle, possibly due to the difference between CAE and actual weld bead geometry. Therefore, we decided to study the extent to which the stresses in the joint vary with the variation of the weld bead geometry. Morphing, a FE modeling method and design of experiment method, was utilized to
Hada, YusukeSugita, Hisayuki
In automotive engineering, seam welds are frequently used to join or connect various parts of structures, frames, cradles, chassis, suspension components, and body. These welds usually form the weaker material link for durability and impact loads, which are measured by lab-controlled durability and crash tests, as well as real-world vehicle longevity. Consequently, designing robust welded components while optimizing for material performance is often prioritized as engineering challenge. The position, dimensions, material, manufacturing variation, and defects all affect the weld quality, stiffness, durability, impact, and crash performance. In this paper, the authors present best practices based on studies over many years, a rapid approach for optimizing welds, especially seam welds, by adopting Design For Six Sigma (DFSS) IDDOV (Identify, Define, Develop, Optimization, and Verification) discrete optimization approach. We will present the case testimony to show the approach throughout
Qin, Wenxin (Daniel)Li, FanPohl, Kevin J.
The metal inert-gas (MIG) welding technique employed for aluminum alloy automotive bumpers involve a complex thermo-mechanical coupling process at elevated temperatures. Attaining a globally optimal set of model parameters continues to represent a pivotal objective in the pursuit of reliable constitutive models that can facilitate precise simulation of the welding process. In this study, a novel piecewise modified Johnson-Cook (MJ-C) constitutive model that incorporates the strain-temperature coupling has been proposed and developed. A quasi-static uniaxial tensile model of the specimen is constructed based on ABAQUS and its secondary development, with model parameters calibrated via the second-generation non-dominated sorting genetic algorithm (NSGA-II) method. A finite element simulation model for T-joint welding is subsequently established, upon which numerical simulation analyses of both the welding temperature field and post-welding deformation can be conducted. The results
Yi, XiaolongMeng, DejianGao, Yunkai
Solid state joining processes are attractive for magnesium alloys as they can offer robust joints without the porosity issue typically associated with welding of magnesium and dissimilar materials. Among these techniques, Self-Piercing Riveting (SPR) is a clean, fast and cost-effective method widely employed in automotive industry for aluminum alloys. While SPR has been proven effective for joining aluminum and steel, it has yet to be successfully adapted for magnesium alloy castings. The primary challenge in developing magnesium SPR technology is the cracking of the magnesium button, which occurs due to magnesium's low formability at room temperature. Researchers and engineers approached this issue with several techniques, such as pre-heating, applying rotation to rivets, using a sacrificial layer and padded SPR. However, all these methods involve the employment of new equipment or introduction of extra processing steps. The aim of this work is to develop a SPR technique which adapts
Tabatabaei, YousefWang, GerryWeiler, Jonathan
Parts in automotive exhaust assembly are joined to each other using welding process. When the exhaust is subjected to dynamic loads, most of these weld joints experience high stresses. Hence it should be ensured that the exhaust assembly is designed to meet the requirements of exhaust durability for the estimated life of the vehicle. We also know that all parts used in manufacturing of exhaust system have inherent variations with respect to sheet metal thickness, dimensions and shape. Some parts like flex coupling and isolators have high variations in their stiffness based on their material and manufacturing processes. This all leads to a big challenge to ensure that the exhaust system meets the durability targets on a vehicle manufactured with all these variations. This works aims to evaluate the statistical spread in weld life of an exhaust with respect to inherent variations of its components. For the purpose of variational analysis, a Design of Experiments (DOE) is done where
Ramamoorthy, RajapandianBazzi, Ramzi
This study investigates the nonlinear correlation between laser welding parameters and weld quality, employing machine learning techniques to enhance the predictive accuracy of tensile lap shear strength (TLS) in automotive QP1180 high-strength steel joints. By incorporating three algorithms: random forest (RF), backpropagation neural network (BPNN), and K-nearest neighbors regression (KNN), with Bayesian optimization (BO), an efficient predictive model has been developed. The results demonstrated that the RF model optimized by the BO algorithm performed best in predicting the strength of high-strength steel plate-welded joints, with an R 2 of 0.961. Furthermore, the trained RF model was applied to identify the parameter combination for the maximum TLS value within the selected parameter range through grid search, and its effectiveness was experimentally verified. The model predictions were accurate, with errors controlled within 6.73%. The TLS obtained from the reverse-selected
Han, JinbangJi, YuxiangLiu, YongLiu, ZhaoWang, XianhuiHan, WeijianWu, Kun
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
Tractors, as agricultural machines consisting of various interconnected assemblies, work in unison to perform specific functions and achieve desired outputs. Among these assemblies, the Hood Assembly, Firewall Assembly, Scuttle Assembly, Fuel Tank Assembly, Fender Assembly, Floor Panel Assembly, and Footstep Assembly are all produced through sheet metal fabrication. The components of these assembly are made from sheet metal and are joined together using various techniques, such as bolts, welds, and others. The inherent characteristics of welding processes generally results in welded joints having lower fatigue strength compared to the individual parts being joined. Moreover, welds are commonly applied at geometric features or areas where the section changes within a structure. As a result, even in a structurally sound design, welded joints are often more vulnerable to fatigue failure. Hence, a comprehensive assessment of the durability of a welded structure requires placing
Kumar, ArunPandey, Manoj KumarThirugnanam, VivekanndanMani, SureshRedkar, Dinesh
This study investigates the fabrication and characterization of overhanging structures using the Cold Metal Transfer (CMT) pulse based Wire Arc Additive Manufacturing (WAAM) technique, specifically targeting automotive applications on commercial aluminum components. Focusing on optimal welding strategies for overhanging structures, components are fabricated by providing offsets during consecutive deposition of layers, thus producing parts with angles of 45°, 60° and 90° inclinations from the substrate. Three specimens undergo around twenty-five layers of deposition, resulting in structurally sound joints within this specified angle range. AA 4043 electrode is utilized, and welding parameters are optimized through trials by verifying with bead on plate deposition. Successful outcomes are achieved within the specified angle range, though challenges arise beyond 60°, complicating the maintenance of desired weld quality. The study further evaluates the microstructure, microhardness, and
A, AravindS, JeromeA, Rahavendran
Metal bipolar plates are important components of fuel cells, playing a role in conducting electricity, gas, and heat during the operation of fuel cells. The sealing and joint quality of the bipolar plates have a significant impact on the performance and service life of fuel cell stacks. In actual production, laser technology is often used for welding bipolar plates, and the welding quality is ensured by laser process parameters when using the same equipment. Therefore, in order to further optimize the laser welding process of metal bipolar plates, this paper selects three laser parameters for single-factor analysis to evaluate the impact of each parameter on laser welding quality. The Box-Behnken design-response surface method is used for multi-factor analysis, with process parameters as inputs and weld quality parameters as outputs, to assess the sensitivity of each laser process parameter to laser welding quality, and to fit a nonlinear function. Based on the results, the optimal
Li, WeiChang, GuofengXu, HuashengHuang, Ziheng
This study investigates the influence of tungsten inert gas (TIG) welding parameters on the dilution and hardness of AA5052 aluminum alloy. Employing Taguchi’s L27 orthogonal array, the research systematically explores the effects of current, voltage, and welding speed. Analysis of the experimental data utilizes signal-to-noise ratio, analysis of variance (ANOVA), and regression techniques. The study compares a traditional regression model with a fuzzy logic approach for result validation, finding that the latter exhibits marginally better predictive accuracy. Optimal welding parameters are identified as 150 A current, 20 V voltage, and 45 mm/s welding speed, yielding a maximum dilution of 52.81% and hardness of 145.3 HV 0.5. Current emerges as the most significant factor influencing both dilution and hardness. Microstructural examination, hardness profiling, and tensile testing of specimens welded under optimized conditions reveal a characteristic hardness distribution across the weld
Omprakasam, S.Raghu, R.Balaji Ayyanar, C.
The development of advanced high-strength steels has become essential in the production of lightweight, safe, and more economical vehicles within the context of the automotive industry. Among the advanced high-strength steels, complex phase steels stand out, characterized by their high formability and high energy absorption and deformation capacity. Laser welding is a technique that applies laser using high energy density as a heat source. It has the advantages that the high welding speed and low heat input compared to other welding methods cause a decrease in deformation, and the narrow width of the weld bead and heat-affected zone allows for the welding of complex parts that would be difficult for other welding methods. Based on a study of a complex phase steel, an analysis was made of the microstructures observed by optical microscopy, the grain boundaries and certain phases contained in this microstructure, as well as the microstructures of each area in the laser welding region
Dias, Erica XimenesReis de Faria Neto, AntonioCastro, Thais SantosMartins, Marcelo SampaioSantos Pereira, Marcelo
In this study, an investigation was conducted on friction stir spot-welded AA7075 aluminum alloy with mild steel. Fusion welding of these two materials presents challenges because of differences in melting points and metallurgical incompatibility. To overcome these challenges, friction stir spot welding was employed for joining these materials. Trial runs were conducted based on a central composite rotatable design matrix, which encompassed four factors at five levels: tool rotational speed, plunge rate, dwell time, and tool diameter ratio. Shear tests were conducted to evaluate the joint strength, and subsequently, an empirical equation was developed via analysis of variance. Notably, a joint fabricated under specific conditions demonstrated exceptional strength, with the highest fracture load of 9.56 kN. These optimal parameters included the tool rotational speed, plunge ratio, dwell time and diameter ratio of 1000 rpm, 4 mm/min, 5 sec and 3.0. This achievement underscores the
Salman, Riyam Abd AlrazaqMohammed, Khidhair JasimRajan, Rajthilak KrishnanSmaisim, Ghassan FadhilSiva Subramanian, R.
One of the most common materials in the fabrication sectors, especially in the auto sector, is Aluminum alloy. Owing to its low strength to weight ratio, it could be a good fit for a number of applications. The cold working procedure may strengthen the 5XXX series Aluminum alloy, which is not heat treatable and it is also challenging to fuse these alloys together using fusion welding processes. In Recent days, a solid-state welding procedure, Friction Stir Welding (FSW) is used to join this alloy. The impact of FSW process parameters on tensile strength of the joint is examined in this study. Based on the outcomes of the experiment, the highest tensile strength is observed at 900 RPM tool rotation, 100 mm/min welding speed, 1.5-degree tilt angle, and 3.0 tool diameter ratio. Superior strength (246 MPa) of this parameter over its competitors can be attributed to the balanced material flow and the formation of finer grains in the weld region.
Maram, Sreenivasulu ReddyKumar, M. VinothHariram, V.
The AA2024 aluminum alloy is a precipitate-hardening material renowned for its exceptional strength and corrosion resistance, making it a preferred choice for various applications in industries such as aircraft and automobile manufacturing. However, it is challenging to weld using fusion welding processes due to differences in melting points between the aluminum base material and its oxide layer. Consequently, this often results in issues such as partially melted zones, alloy segregation, and hot cracking. In this investigation, electron beam welding was employed to minimize heat input and prevent the formation of coarse grains in the heat-affected zone. Observations revealed that the joint achieved a maximum strength of 285 MPa, representing 62% of the base material's strength. This improvement in strength can be ascribed to the establishment of fine and recrystallized grains at the weld interface, along with the presence of copper aluminide strengthening precipitates.
Rajesh, A.Karthick, S.Mallieswaran, K.Shanmugam, Rajasekaran
This research investigates the impact of friction stir welding (FSW) used to join micro-alloyed steel, on the material and its mechanical characteristics. FSW increases the metallurgical and mechanical qualities of joints made from micro-alloyed steel. However, Friction Stir Welding has produced only modest improvements in connecting steels. Automobile chassis, offshore platforms, oil and gas pipelines, mining, shipbuilding and railroad carriages, pressure vessels, bridges, and storage tanks are just some of the many places and find micro-alloyed steels employed. Frictional heat and tool movement over the joint cause micro defects occurred. Tungsten carbide tools are used in this investigation. Welding shares the same process characteristics, such as the tool's rotating speed (900 rpm) and axial force (10 kN). The table's traverse speed options are available, including 50 mm/min, 60 mm/min, and 70 mm/min. Vickers microhardness testing machines and tensile testing machines are used to
Rajan, C. SakthiKumar, N. MathanKumar, K. VetrivelKannan, S.Soundararajan, S.
Spot welds are integral to automotive body construction, influencing vehicle performance and durability. Spot welding ensures structural integrity by creating strong bonds between metal sheets, crucial for maintaining vehicle safety and performance. It is highly compatible with automation, allowing for streamlined production processes and increased efficiency in automotive assembly lines. The number and distribution of spot welds directly impact the vehicle's ability to withstand various loads and stresses, including impacts, vibrations, and torsion. Manufacturers adhere to strict quality control standards to ensure the integrity of spot welds in automotive production. Monitoring spot weld count and weld quality during manufacturing processes through advanced inspection techniques such as Image processing by YOLOv8 helps identify the number of spots and quality that could compromise safety. Automating quality control processes is paramount, and machine vision offers a promising
Kadam, Shubham NarayanDolas, AniketMishra, Jagdish
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Titave, Uttam VasantZalaki, NitinNaidu, Sudhakara
To meet the corrosion target of automotive vehicles, different coated steel sheets are used in various parts of the body in white (BIW), chassis, and powertrain. Hot dip galvanized (GI) and hot hip galvannealed (GA) are the two most commonly used steel sheets worldwide. Other coatings, such as Zn-Ni, Al-Si, Zn plating, and electro-galvanized zinc coating, are application-specific coatings that are used suitably to meet different performance requirements. To meet the robust corrosion and performance requirements, there is a trend of increasing the use of coated steel sheets in automotive vehicles. While different coated steels have different corrosion performance, they also exhibit different joining and paint adhesion performance. Spot welding is one of the most common technique used for joining automotive parts. Joint strength majorly depends on steel base material grade, chemistry and properties. However, coating on base material also influence joining performance. Major challenge is
Jain, VikasMisal, SwapnaliDeshmukh, MansiPaliwal, Lokesh
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welded and drawn tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of flash-welded rings 0.062 to 4.499 inches (1.57 to 114.27 mm), inclusive, in radial thickness with cross-sectional areas up to 32 square inches (206 cm2) (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
The dissimilar welding of titanium to steel enables the integration of the advantageous properties of both metals, facilitating the design of lightweight, corrosion-resistant, and high-strength multifunctional composite structures. However, significant differences in their thermophysical properties pose substantial technical challenges in practical welding scenarios, necessitating careful selection of process parameters to enhance the quality and performance of the weld joint. This article establishes a support vector machine (SVM) model with laser power, welding speed, and laser spot diameter as independent variables, and the maximum residual stress and minimum yield strength of the weld joint as dependent variables. To improve prediction accuracy, the SVM model is optimized using the beluga whale optimization (BWO) algorithm. Taking the established model as the objective function, the multi-objective salp swarm algorithm (MSSA) is employed to optimize the laser welding process
Zhu, YubinMeng, XiangliZhang, Xinran
Bemis Manufacturing and BASF collaborated to develop a lighter-weight and lower-cost hydraulic tank for compact excavators that was recognized with a lightweighting award traditionally reserved for automotive innovations. Receiving an honorable mention in the Enabling Technology category of this year's Altair Enlighten Awards, the development team leveraged a combination of injection molding and vibration welding techniques to lower costs by approximately 20% and reduce mass by about 5% compared to the traditional roto-molding process. The solution also is more eco-efficient, delivering both environmental savings (reductions in lifecycle CO2 emissions) and reducing lifecycle costs.
Gehm, Ryan
This specification covers an aircraft quality, corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, wire, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
A company says that its digital twin alignment system, incorporating a sophisticated AI algorithm and an off-the-shelf camera, has the potential to revolutionize the auto industry, potentially saving it up to a staggering $20 billion in the effort to detect defects on the manufacturing line. Generally, such inspections of spot welds, bolt holes and the like are handled one of three ways: Slow manual inspections that can have high error rates. Even slower inspection with coordinate-measuring machines (CMMs) that can take hours to inspect 150 spot welds. Tremendously expensive technology, such as lasers, that still aren't perfect.
Clonts, Chris
This specification covers a premium aircraft-quality, maraging steel in the form of bars, forgings, mechanical tubing, flash-welded rings up to 10.0 inches (254 mm) in diameter or least distance between parallel sides (thickness), and stock of any size for forging or flash-welded rings (see 8.6).
AMS E Carbon and Low Alloy Steels Committee
This specification defines the requirements for in-process correction of foundry discontinuities by manual welding of castings.
AMS B Finishes Processes and Fluids Committee
Although structural intensity was introduced in the 80’s, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodology is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response. The field separation is based on the Helmholtz-Hodge theorem, which ensures the computation’s
Gagliardini, LaurentTakhchi, JamalSadoulet-reboul, EmelineOuisse, MorvanBornet, Frederic
The integration of collaborative robots, or cobots, into manufacturing has revolutionized traditional processes, offering an unprecedented blend of precision, productivity, and safety. Known for their effectiveness in activities from palletizing to welding, cobots are emerging as invaluable assets for activities involving material removal like sanding, grinding and polishing, relieving human workers from arduous and risky tasks.
This specification covers a magnesium alloy in the form of welding wire (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a magnesium alloy in the form of welding wire (see 8.5).
AMS D Nonferrous Alloys Committee
The electrification of vehicles marks the introduction of new products to the automotive market and a continued effort to optimize their performance. The electric motor is an important component with which a further optimization of efficiency, power density and cost can be achieved. Additional benefits can be realized in the laminated core. This paper presents an innovative method to produce laminated stacks by a chain of processes different from conventional ways. The process chain presents a sequence of precision blanking, buffering, heat treatment and gluing. The effect of these processes is compared with existing solutions that typically contain some individual features but usually not the combination that enhances the overall effect. The heat treatment decreases residual stresses from previous process steps and reduces power losses in the laminated core. Depending on the design, benefits around 20% are found. The bonding of lamellae by gluing maintains their flatness and prevents
Van Der Sluis, FrancisSeitzinger, BennyDe Vet, SanderAlexandrov, OlegKruijswijk, EmileHerzberger, Andreas
The design of lightweight vehicle structures has become a common method for automotive manufacturers to increase fuel efficiency and decrease carbon emission of their products. By using aluminum instead of steel, manufacturers can reduce the weight of a vehicle while still maintaining the required strength and stiffness. Currently, Resistance Spot Welding (RSW) is used extensively to join steel body panels but presents challenges when applied to aluminum. When compared to steel, RSW of aluminum requires frequent electrode cleaning, higher energy usage, and more controlled welding parameters, which has driven up the cost of manufacturing. Due to the increased cost associated with RSW of aluminum, Refill Friction Stir Spot Welding (RFSSW) is being considered as an alternative to RSW for joining aluminum body panels. RFSSW consumes less energy, requires less maintenance, and produces more consistent welding in aluminum as compared to RSW. Research has shown that RFSSW is capable of
Gale, DamonHovanski, YuriCoyne, JeremyNamola, Kate
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination. This provides realistic predictions of mechanical performance, while
Goel, AshishP, PraveenSharma, HirenFaggioli, Thiago
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure. For validation purposes, a set of spot-welded lab test specimens has been analyzed for demonstrating the mesh-sensitivity of structural stress computation and fatigue test data transferability, e.g., from lap
Zhang, LunyuWu, ShengjiaDong, Pingsha
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed. The net churning losses obtained from the simulations are compared
Ballani, AbhishekSchlautman, JeffSrinivasan, ChiranthAhmed, RayhanSchroeder, Debera
Automotive body structures are being increasingly made in multi-material system consisting of steel, aluminum (Al) and fiber-reinforced plastics (FRP). Therefore, many joining techniques such as self-piercing riveting (SPR) and adhesive bonding have been developed. On the other hand, OEMs want to minimize the number of joining techniques to reduce the manufacturing complexity. Amount all joining methods, resistance spot welding (RSW) is the most advanced and cost-effective one for body-in-white. However, RSW cannot be applied for joining dissimilar materials. Therefore, a novel Rivet Resistance Spot Welding method (RRSW) was developed in which Al or FRP components can be directly welded to steel structures with existing welding systems. RRSW uses rivet-like double T-shaped steel elements as a welding adapter which are formed or integrated into Al or FRP components during their forming process. After that, they are welded to the steel components by RSW. This paper shows at first the
Fang, XiangfanZhang, FanXu, Hongli
Items per page:
1 – 50 of 2849