Browse Topic: Radio-frequency identification
Innovators at NASA Johnson Space Center have developed a method and apparatus to multiplex Radio Frequency Identification (RFID) signals efficiently. The resulting Hyper-Distributed RFID Antenna (HYDRA) system enhances distribution of the RFID reader signal, providing improved coverage for large areas as well as for small, fixed regions requiring a high density of reader antennas. This greater coverage translates into better RFID sensing capabilities, higher localization accuracy, and enhanced logistics awareness
Product traceability is an increasingly dominant concern in healthcare, partly due to regulations like the FDA’s Unique Device Identification (UDI) Rule for medical devices and the Drug Supply Chain Security Act (DSCSA) for pharmaceutical products. Widespread disruptions since 2020 have also exposed critical supply-chain vulnerabilities caused, in part, by a lack of visibility — with negative consequences reaching all the way to the point of care, further underlining the need for change
Innovators at NASA Johnson Space Center have developed a quarter-wavelength RFID slot antenna that provides polarization diversity and employs dual resonances, but in a form factor that is much smaller than other RFID antennas that provide similar functionality
A method developed at NASA Johnson Space Center uses Radio Frequency Identification (RFID) interrogators for use with wearable active RFID sensor tags that can operate on ultra-low power. The technique uses a store-and-forward approach to manage the collection of data from RFID active tags even when they are not in range of an individual interrogator, as they move from the coverage area of one interrogator to the next. This allows the use of RFID active tags to transport sensor data in a highly complex environment where instantaneous access to an RFID interrogator cannot be guaranteed. Using this technique, an RFID active tag battery operational lifetime can be extended
Schreiner MediPharm, a Germany-based provider of innovative functional label solutions for the healthcare industry, has partnered with SCHOTT Pharma, a specialist in drug-containment and -delivery solutions for medications, to develop a solution to equip prefilled syringes with RFID. Among other applications, the combination syringe and smart label opens broad opportunities to optimize hospital routines
Retrieving objects from a pile is a daunting task for a robot as it involves complex reasoning about the pile and objects in it, which presents a steep challenge. MIT researchers previously demonstrated a robotic arm that combines visual information and radio frequency (RF) signals to find hidden objects that were tagged with RFID tags (which reflect signals sent by an antenna). Building off that work, they have now developed a new system that can efficiently retrieve any object buried in a pile. As long as some items in the pile have RFID tags, the target item does not need to be tagged for the system to recover it
Researchers at NASA Johnson Space Center have developed a wireless instrumentation system whose sensor tags can operate for years in a low-power hibernation state with instantaneous over-the-air passive RFID wakeup using only a small coin cell battery
A team of researchers at EMPA have developed a water-activated disposable paper battery. The researchers suggest that it could be used to power a wide range of low-power, single-use disposable electronics, such as smart labels for tracking objects, environmental sensors, and medical diagnostic devices, and minimize their environmental impact
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification
This document contains minimum operational performance specification (MOPS) of active on-board INFLIGHT ICING DETECTION SYSTEMS (FIDS). This MOPS specifies FIDS operational performance which is the minimum necessary to satisfy regulatory requirements for the design and manufacture of the equipment to a minimum standard and guidance towards acceptable means of compliance when installed on an AIRCRAFT. Detection of ICE accreted on the AIRCRAFT during ground operations is not considered in this document. This MOPS was written for the use of FIDS on AIRCRAFT as defined in 1.3 and 2.3. Expected minimum performance specifications for FIDS and their functions are provided in Section 3. The minimum performance requirements as defined in Section 3 do not consider SYSTEM performance as installed on the AIRCRAFT. Performance in excess of the minimum performance may be required by the SYSTEM installed on an AIRCRAFT in order to meet regulatory or operational requirements. This topic is considered
A robotic system called RFusion is a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper. It fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view. The RFusion prototype relies on RFID tags, which are cheap, battery-less tags that can be stuck to an item and reflect signals sent by an antenna. Because RF signals can travel through most surfaces, RFusion is able to locate a tagged item within a pile
The lack of traceability in today’s supply-chain system for auto components makes counterfeiting a significant problem leading to millions of dollars of lost revenue every year and putting the lives of customers at risk. Traditional solutions are usually built upon hardware such as radio-frequency identification (RFID) tags and barcodes, and these solutions cannot stop attacks from supply-chain (insider) parties themselves as they can simply duplicate products in their local database. This industry-academia collaborative work studies the benefits and challenges associated with the use of distributed ledger (or blockchain) technology toward preventing counterfeiting in the presence of malicious supply-chain parties. We illustrate that the provision of a distributed and append-only ledger jointly governed by supply-chain parties themselves makes permissioned blockchains such as Hyperledger Fabric a promising approach toward mitigating counterfeiting. Meanwhile, we demonstrate that the
Innovators have developed an RFID-based system for sensing the angular position of rotating systems. The RFID-Based Rotary Position Sensor can be used as a position/orientation sensor or implemented in a controller to interpolate and refine the rotation angle of a rotating system. The sensor is part of a suite of RFID-based technologies developed to monitor and manage inventory based on passive RFID sensors. NASA's RFID sensors can wirelessly track either bulk levels or discrete quantities of materials within a container without having to attach RFID tags to each item
This standard describes a requirement for automotive tire traceability. It includes a definition of the RFID tag and the associated tire data set that can be accessed using the RFID tag as an identifier. The standard describes a unique identification and the associated data set for each tire produced by the tire fabricator. This data will either be provided or transmitted at the time of shipment to retailers, wholesalers or original equipment vehicle manufacturers. Tire identification code and data may be used for error proofing, determining the tire specifications or supporting any inquiries that occur for the duration of its automotive life
This paper contains RF radiated emission and susceptibility data from passive Radio Frequency Identification (RFID) tags and readers operating at 13.56 MHz, 915 MHz, and 2.45 GHz. Laboratory test procedures incorporated the methods of RTCA DO-160D (test procedures for aviation electrical/electronic equipment) and DO-233 (test procedures for consumer portable electronic devices (PEDs)). Only one commercially available system was evaluated per established operating frequencies
The scope of this document is to: 1 Provide a requirements document for RFID tag manufacturers to produce passive-only UHF RFID tags for the aerospace industry. 2 Identify the minimum performance requirements specific to the Passive UHF RFID Tag to be used on airborne equipment, to be accessed only during ground operations. 3 Specify the test requirements specific to Passive UHF RFID tags for airborne equipment use, in addition to EUROCAE ED-14 / RTCA DO-160 compliance requirements separately called out in this document. 4 Identify existing standards applicable to Passive UHF RFID Tag. 5 Provide a certification standard for RFID tags which will use permanently-affixed installation on airborne equipment
NASA's Johnson Space Center has developed a suite of RFID-based technologies focused on improving communication of an RFID reader with a greater number of RFID tags in open and enclosed areas
The Recommended Practice SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under Recommended Practice SAE J2954 should also be able to be charged by SAE J1772 plug-in chargers. This Recommended Practice is planned to be standardized after the 2018 timeframe after
This standard describes a requirement for automotive tire traceability. It includes a definition of the RFID tag and the associated tire data set that can be accessed using the RFID tag as an identifier. The standard describes a unique identification and the associated data set for each tire produced by the tire fabricator. This data will either be provided or transmitted at the time of shipment to retailers, wholesalers or original equipment vehicle manufacturers. Tire identification code and data may be used for error proofing, determining the tire specifications or supporting any inquiries that occur for the duration of its automotive life
Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement. Additionally, since the tools are all contained within an interlocked enclosure, this system reduces the required frequency of tool
Items per page:
50
1 – 50 of 114