Human Head and Neck Kinematics during Autonomous and Human Braking in Three Initial Head Positions

Features
Authors Abstract
Content
Whiplash injuries resulting from vehicle collisions are still a significant socio-economic issue across the world. Years of research has resulted in the development of injury criteria, restraint systems and a deeper understanding of the injury mechanism. However, some grey areas remain and, in the context of the increasing automation of vehicles, one can wonder how the injury mechanisms may change due to changes in collision forces or directions. This article presents an experiment with ten volunteers subjected to two braking modes, including automated braking preceded by an alarm warning or robot human braking, in three different initial head positions: forward facing, lateral rotation and flexion rotation. The volunteers were equipped with inertial measurement units to record their head and neck dynamics. Results show that the initial position of volunteers implies differences in the volunteer head dynamics. Also, the auditory alarm emitted prior to the emergency braking may have helped the volunteers to mitigate the mechanical stimulus and most likely the injury risk.
Meta TagsDetails
DOI
https://doi.org/10.4271/09-10-02-0007
Pages
24
Citation
Mackenzie, J., Dutschke, J., Di Loreto, C., Forrest, M. et al., "Human Head and Neck Kinematics during Autonomous and Human Braking in Three Initial Head Positions," SAE Int. J. Trans. Safety 10(2):121-133, 2022, https://doi.org/10.4271/09-10-02-0007.
Additional Details
Publisher
Published
Mar 28, 2022
Product Code
09-10-02-0007
Content Type
Journal Article
Language
English