Browse Topic: Synthetic lubricants

Items (367)
Over the years, the application of predictive analysis techniques in internal combustion engines to detect internal component wear and avoid catastrophic engine failures has evolved a lot. Among the most used are the vibration analysis and analysis of lubricating oil. The objective of this study is to investigated the vibrational behavior of an internal combustion engine in function of fuel and the type of technologies incorporated into automotive oils. The results show that the vibration level of the engine increases with the time of use of the lubricating oil and that this increase is very significant when the oil viscosity reaches the minimum value stipulated by the manufacturer. Semi-synthetic and synthetic lubricating oils have similar engine protection characteristics, but synthetic oil protecSt the engine for a longer period of time due to less degradation of chemical properties compared to semi-synthetic. Mineral lubricating oil presented protection for a very short test period
Marcio Santana, Claudiode Almeida Junior, Helder Alves
Lubricating oils for automotive engines have been incorporating important improvements in chemical properties to increase engine performance, reduce fuel consumption and vehicular emissions indices, in addition to increasing the time interval for changing the lubricant itself. The objective of this study is to investigate the vibrational behavior of the block and crankshaft an Otto cycle internal combustion engine operated with ethanol and gasoline fuel as a function of the viscosity and total base number (TBN) of the lubricant. The study consisted of instrumenting the block and the 1st and 5th fixed bearings of the crankshaft with accelerometers to measure the engine vibration intensity and operating the engine on a bench dynamometer in a specific test cycle. Each experiment lasted 600 hours and every 50 hours a block and crankshaft engine vibration level were measured and 100ml sample of lubricating oil was collected to check viscosity and TBN chemical lubricant's properties. The
Santana, Claudio Marcio
This specification covers a nitrile rubber (NBR) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7289 specification
AMS CE Elastomers Committee
This specification covers a nitrile rubber (NBR) in the form of molded compression seals such as O-rings, T-seals, and molded-in-place gaskets for aeronautical and aerospace applications. For sheet, strip, tubing, extrusions, and molded shapes, use the AMS3786 specification, which is intended for that use
AMS CE Elastomers Committee
This study investigates the particle engine emission characteristics including particle-bound metals for different lubricants used in a direct injection (DI) engine fed with the hydrogen-rich reformate containing 75% mol. H2 and 25% mol. CO2. The particle number concentration, size distribution and content of trace metals in the emitted particles are measured, analyzed, and compared for the baseline gasoline-fed engine and the reformate-fed engine. The results show that for all tested lubricants the particle number and mass emission from the reformate-fueled engine are significantly higher than from the baseline gasoline-fed counterpart. Also, an ICP analysis performed on PM demonstrated that the content of trace elements from the lubricant are higher for the reformate fuel. This indicates that an excessive lubricant involvement in combustion is the reason of these findings. Furthermore, the particle measurement results suggest that the engine using synthetic lubricant shows lower
Thawko, AndyYadav, HarekrishnaShapiro, MichaelTartakovsky, Leonid
This method is used for determining the volume swelling effect of aero-derived gas turbine engine lubricants on elastomeric materials. It provides insight into the expected performance of a candidate lubricants impact upon elastomer swell and provides data to determine if the candidate lubricant meets specification requirements. This ARP is based upon Federal Standard 791, Method 3604
E-34 Propulsion Lubricants Committee
The new lubricant was newly developed for differential gear unit to contribute to all friction factors/conditions (Boundary, Hydrodynamic & those Mixed Lubrication) even if the differential gear is operating under very severe conditions such as high-gear-contact pressure and highly sliding speed. The main concept of development was selecting and formulating the optimized additives for severe lubrication conditions in order to achieve the best balance between thinner-film thickness and extreme pressure performance. In conclusion, by the application of both synthetic base oil instead of mineral one and activation technology of MoDTC in spite of ZnDTP free formulation, it is finally realized to reduce the torque of final drive unit by 40% and it can be estimated the 0.5% of CO2 reduction in actual vehicles
Kubo, TomooAkie, NaotoOkamoto, YujiOkuda, SachikoSagawa, TakumaruAriyama, MonaKomatsubara, Hitoshi
This SAE Aerospace Information Report (AIR) establishes guidance for the specification of formulated lubricant properties which contribute to the lubricating function in bearings, gears, clutches, and seals of aviation propulsion and drive systems
E-34 Propulsion Lubricants Committee
This specification establishes requirements for automatic shutoff, quick-disconnect coupling assemblies for fuel and oil lines
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This test method provides procedures for exposing specimens of elastomer material (slab form) representative to those used in gas turbine engines to aviation lubricants under extended duration and engine relevant thermal conditions. For AS5780 requirements the time is at least 1800 hours and temperatures are 100 °C to 160 °C. Positive volume change is an indication of specimen swell and subsequent negative volume change is an indication of specimen deterioration, both properties are important in the evaluation of the compatibility of the lubricant with elastomers used in the construction of the gas turbine
E-34 Propulsion Lubricants Committee
This SAE Aerospace Recommended Practice (ARP) addresses the general requirements for data recording procedures, packaging, and storing of elastomeric seals and seal assemblies which include an elastomeric element prior to the seal being assembled into hardware components. It applies specifically to those elastomeric seals and seal assemblies packaged shortly after manufacture. The storage period prior to installation of the elastomeric seals and seal assemblies into hardware components is commonly referred to as shelf life. The information contained in this ARP is intended to be utilized by those organizations who do not have specific requirements or recommendations already in place for the control of elastomeric seals and seal assemblies. This ARP can be specified in control, storage, and procurement documents. However, when the requirements of this document are in conflict with the customer's requirements or specifications, the requirements of the customer's detailed specification
A-6C2 Seals Committee
This index provides an overview of lubricants and symbols for the purpose of assisting the user in the identification of the appropriate product and relevant SAE specification. The aim is to better determine the best lubricant to be used for a particular application. If containers used for shipping lubricants are also to be marked, the same identification and symbols should be used. See also ISO 5169 Machine tools - Presentation of lubrication instructions
Fuel and Lubricants TC2 Industrial Lubricants
See Table 1. DAx fluids are mineral oil based, DPx fluids are polyalphaolefin based, and DEx are ester based
Fuel and Lubricants TC2 Industrial Lubricants
This specification covers two classes (durometers) of tetrafluoroethylene/propylene rubber (FEPM) in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7255 or AMS7256 specification, as appropriate
AMS CE Elastomers Committee
This specification covers a fluorocarbon (FKM) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7276 specification
AMS CE Elastomers Committee
This specification covers a fluorocarbon (FKM) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7259 specification
AMS CE Elastomers Committee
Drain and Fill plugs used on engines, transmissions, transfer cases and front and rear drive axles for class 5 – 8 vehicles
Truck and Bus Powertrain Committee
This document establishes general gland design criteria for static and dynamic O-ring seal applications used in fluid systems and at fluid pressures common to the aerospace industry. Detailed discussion of design criteria and tables of recommended gland dimensions are contained in the documents listed in Table 1. SI unit conversions for U.S. customary units have been provided for reference purposes
A-6C2 Seals Committee
This specification covers a polyalphaolefin/ester-blend fluid
AMS CE Elastomers Committee
The procedures contained in this SAE Recommended Practice have been developed to establish uniform methods for impulse and high temperature circulation testing of hydraulic hose assemblies under special conditions not specified in SAE J343 for SAE J517 hoses.Basic test procedures are to be in accordance with SAE J343 except as modified in this document
Hydraulic Hose and Hose Fittings Committee
Recently, vehicle production volumes have been increasing, particularly in newly developing countries that often lack adequate infrastructure. These regions utilize many unimproved roads and frequently experience heavy rainfall, requiring robust product features. In contrast, developed countries, with well-maintained infrastructure, have emphasized protection of the environment, requiring automobile manufacturers to target reductions in carbon dioxide emissions. Hub unit bearings, which enable smooth wheel rotation, are mounted at the wheel center. The hub bearing is a critical part which supports the automotive body and requires high reliability. To make environmental progress, hub unit bearings have increasing requirements for low friction. NSK has developed effective grease technologies to meet the diverse requirements of hub unit bearings, such as high reliability and low friction under severe environmental conditions. Under wet operating conditions, the developed grease extended
Takayama, Yukihisa
This specification covers a neopentyl polyol ester fluid (see 8.2) with AS5780 HPC or MIL-PRF-23699 HTS Class performance
E-34 Propulsion Lubricants Committee
Silicone fluids are known to have high Viscosity Indices (VI), and high Oxidation Onset Temperatures (OOT). Silicone VI and OOT characteristics make these fluids appealing for use as lubricants in high temperature applications, and where lubricant longevity is desired. Despite thermal and oxidative benefits, silicones lubricants have a reputation as being poor lubricants in metal-to-metal applications, and are typically only selected for use in plastic applications. Most industrial knowledge about silicone lubricants is based on characteristics of PolyDiMethyl Siloxanes (PDMS), in which case, lubricity limitations do exists. However, there are other silicone based lubricating fluid technologies, that have been commercially available for decades, that far exceed known lubricity performance of PDMS, and in some ways can rival traditional synthetic hydrocarbon. Phenyl-Methyl Silicones (PMS), Fluoro Silicones (FS), and Alkyl-Methyl Silicones (AMS) can offer great performance, at high
Chichester, Chad W.
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan. The main key technologies for mineral oil-based 5W-30 engine oils are the additive technologies used to determine the optimum conditions for the friction modifier, viscosity modifier
Nakamura, YoichiroTomizawa, KenjiOnishi, TakahiroHashimoto, TakashiSato, MotoshigeTatani, TakahiroAkamatsu, AtsushiInaba, HideakiAoki, Ryuji
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Items per page:
1 – 50 of 367