Browse Topic: Tire pressure monitoring systems
Sumitomo Rubber Industries first announced its Sensing Core technology in 2017. But it wasn't until 2024 that the Japanese tire maker used its debut appearance at CES to promote the sensor-free signal analyzer. Sumitomo president and CEO Satoru Yamamoto said the company exhibited at CES, “to expand our partner companies and to get more drivers and companies to know about this sensing core technology.”
Several commercial truck OEMs revealed new medium-duty EVs at NTEA's 2023 Work Truck Week (WTW) in Indianapolis, Indiana. Interest in Class 5, 6 and 7 EVs has ramped up rapidly in recent years, and many OEMs are rolling out new models to meet the increased demand.
This glossary of tire military/industry represents the latest state-of-the-art terms and definitions for military use. This SAE Recommended Practice shall remain open for comments from the reader and shall also be reviewed and updated periodically. Many similar terms and definitions were reviewed from which the ones best applied to military use were selected. It is the purpose of this task force to provide technical definitions in present day use.
Tire inflation pressure has a significant impact over vehicle driving dynamics, fuel consumption as well as tire life. Therefore, continuous monitoring of tire pressure becomes imperative for ride comfort, safety and optimum vehicle handling performance. Two types of tire pressure monitoring systems (TPMS) used by vehicles are - direct and indirect TPMS. Direct systems deploy pressure sensors at each wheel and directly send pressure value to the vehicle Controller Area Network (CAN). Indirect sensors on the other hand use the information from already existing sensors and some physics-based equations to predict the value of tire pressure. Direct TPMS tend to be more accurate but have higher cost of installation while indirect TPMS comes with a minimum cost but compromised accuracy. A digital proof-of-concept study for indirect TPMS development of a non-ESP vehicle based on machine learning (ML) technique is elaborated in this paper. The study aims to propose a methodology for
Tire pressure monitoring system (TPMS) is becoming ubiquitous in modern day vehicles with advanced safety and driver assist systems and plays a key role in predictive maintenance. One of the key challenges to realize an efficient TPMS system is to ensure good antenna coupling between the reader antenna in the cabin or on the roof of the vehicle and the antennas in the tires. Understanding the different external factors that affect the antenna coupling is vital to realize an efficient design. Computer aided simulations on antenna coupling is a cost-effective method to reduce the chances of failure before a TPMS is deployed in an actual vehicle. In this work, a computational approach is presented to optimize the antenna coupling and hence the link budget between the reader antennas and the TPMS antennas at 915 MHz. This is achieved by employing machine learning based optimization using commercially available tools, Altair’s HyperStudy and Altair’s Feko. A powerful combination of machine
The function of a multifunctional display (MFD) system is to provide the crew access to a variety of data, or combinations of data, used to fly the aircraft, to navigate, to communicate, and to manage aircraft systems. MFDs may also display primary flight information (PFI) as needed to insure continuity of operations. This document sets forth design and operational recommendations concerning the human factors considerations for MFD systems. The MFD system may contain one or more electronic display devices capable of presenting data in several possible formats. MFDs are designed to depict PFI, navigation, communication, aircraft state, aircraft system management, weather, traffic, and/or other information used by the flight crew for command and control of the aircraft. The information displayed may be combined to make an integrated display or one set of data may simply replace another. The information contained in this document can be applied to the design of all MFDs, including
Knowledge of the forces on the vehicle is necessary for designing most of the Baja vehicle subsystems, however little knowledge of the dynamic forces on small off-road vehicles is available. To measure the vertical and longitudinal forces on the tires of a Baja vehicle, a custom strain gauge system was designed and combined with Quarq tire pressure sensors while running in off-road conditions. The strain gauge system consisted of a half-bridge Wheatstone bridge of 350 Ohm resistors in bending, feeding the change in voltages into the 20-bit ADC of a Cypress Semiconductor PSoC 5LP microcontroller for data interpretation and then recorded onto an SD card for later analysis. Quarq Tyrewiz tire pressure sensors were placed on both the front and rear tires and the recorded pressures were converted to forces on the tire through calibration. Experimental data was found to agree with suspension models. Data from the strain gauges and tire pressure sensors are in agreement and when used to
ERRATUM
To establish overall performance guidelines, test methods, and minimum performance levels for a TPMS. The system shall visually indicate the tire inflation pressure status. These guidelines include, but are not limited to: a A test methodology for a device which monitors tire inflation, that is located in/on the tire/wheel environment. b Recommended performance guidelines for a TPMS.
This terminology aims to encompass all terms and definitions pertaining to the road performance of pneumatic tires designed for over-the-highway use, such as passenger car, light truck, truck and bus, and motorcycle tires. Not included are terms specific to the performance of agricultural, aircraft, industrial, and other off-highway tires. However, many terms contained in this document also apply to non-highway tires.
Tire Pressure Monitoring System (TPMS) sensor measures air pressure and temperature in the tire and transmits tire information as wireless messages to TPMS central unit which consists of Radio Frequency (RF) receiver. TPMS central unit needs to determine the exact sensor locations (e.g. Front Left, Front Right, Rear Left or Rear Right) in order to correctly identify the location of the tire with pressure out of the desired range. The identified tire with abnormal pressure is highlighted on dash board in the car. Thus, determination of the location of a particular tire made automatically by the TPMS system itself or tire localization is required. TPMS tire localization is implemented currently in several methods. A new method is proposed in this paper. The proposed method uses at least two RF transceivers as repeaters. Each transceiver receives wireless messages (eg. Pressure, temperature, sensor ID) from the nearest TPMS sensor and re-transmits them with RF transceiver identity to TPMS
A tire is one of the most important performance and safety components in a two wheeler. An incorrect tire pressure not only impacts overall performance of a vehicle but also safety and overall fuel economy. The main purpose for appropriate tire pressure is to uniformly distribute vehicle load across the tire contact patch thereby providing an optimal contact between tire and road, effective handling, passenger comfort, maximum tire life and overall vehicle safety. A Tire Pressure Monitoring System (TPMS) measures a range of air pressure and alerts for proper tire pressure maintenance. Currently fully fledged tire pressure sensing systems are used in passenger cars and commercial vehicles. The use of such system in a two wheeler is yet to be recognized as precondition instead of an added attribute. This paper presents an objective methodology, based on analytical simulation and testing, developed in order to derive the optimal condition for front and rear tire pressures to achieve best
Tire Pressure Monitoring System (TPMS) has become a popular system due to regulation in many countries. TPMS consists of sensors that measure air pressure and temperature in the tires. Each sensor transmits tire information to TPMS central unit for display purpose via RF. Commercial trailers having bodies longer than 7 m require RF repeaters to increase the data transmission range. Located near to rear wheels, RF repeater receives sensor signal in the rear wheels and transmits the signal to TPMS central unit. In this paper, we discuss RF repeater which transmits at multiple frequencies in order to increase signal reception. On TPMS central unit, RF receiver is able to tune to receive frequencies used in sensors and RF repeater. Other method for improving reception is to transmit same payload multiple times at same frequency as that of sensor. In the paper, other important specifications are discussed as RF repeater design is concerned. A user’s case of RF repeater is implemented. Time
This paper presents findings based on the examination of time-series tire pressure data. Tire pressure is important to vehicle safety due to its effects on vehicle handling and stability, as well as the impact that inappropriate tire pressure has on tire wear and tire failures. Previous research such as NHTSA’s 2001 Tire Pressure Special Study sampled vehicle populations and recorded tire pressures at a single point in time. Such studies yield important insights into tire pressures on individual vehicles and across the vehicle populations, but cannot provide insights into the behavior of tire pressures over time. The data presented in this paper was measured using the tire pressure monitoring system (TPMS) data from Tesla Model S vehicles. Using Tesla’s on-board diagnostic data logging and remote data retrieval capabilities, the time history of each vehicle’s tire pressures was recorded and fleet-wide data was analyzed. The resulting analysis provides insights into tire pressure
Published information on studies of something so critical to safety as passenger vehicle tire pressures can be found [1, 2]; however, they only account for rolling tires. Studies related to spare tire pressures are lacking. This paper is the result of measurements on 150+ vehicles and the most surprising results are presented regarding the influence of Tire Pressure Monitoring Systems (TPMS) and the new spare tire locations and use. A statistical study was performed on the collected data to determine the correlation between tire pressures, vehicle age and TPMS. One particular topic of investigation was the relationship between various factors that influence spare tire pressure. Some newer models, particularly some mini-vans, have placed the spare tire in an unusual and inconvenient place for regular maintenance. Based on the data collected, TPMS has a positive influence on rolling tires but not on spare tires. The results support the need for TPMS to also monitor spare tire pressures.
Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis. Using the corrected and selected vibration noise, the resonance frequency of the tire vibration system is identified by Maximum Entropy Spectral
Several wireless systems such as Dedicated Short Range Communication (DSRC), cellular, Wi-Fi, Bluetooth, and the Tire Pressure Monitoring System (TPMS) can be found on modern vehicles. In the future, Software Defined Radio (SDR) technology could be integrated into automobiles to increase the efficiency and adaptability of wireless communications systems. SDR is also a powerful tool for designing and testing new communications protocols. However there are also some security considerations associated with SDR. This paper will review some advantages of using SDR technology in the automotive domain as well as potential security issues. The authors are currently conducting research into the use of SDR technology to model wireless systems and investigate security threats in modern vehicular systems.
Starting from the USA and followed by the European Union, legal requirements concerning “Tire Pressure Monitoring Systems” (TPMS) for passenger cars and light trucks will be introduced in China as well and therefore in the third of the three largest automobile markets worldwide. Changes of pressure dependent physical tire properties such as dynamic roll radius and a certain tire eigenfrequency, which are included in the ESC-wheel speed signals, indicates pressure loss in an indirect manner. Systems with corresponding working principles are called “indirect Tire Pressure Monitoring System” (iTPMS). Since the tire is a structural element with varying characteristics according to the design parameters, the roll radius and frequency behavior due to pressure loss is variable as well. As a consequence, tires have to be evaluated regarding there compatibility to iTPMS during the vehicle development process. In order to firstly reduce the testing effort on the complete vehicle and secondly to
This document covers military aircraft wheel and hydraulically actuated brake equipment.
This terminology aims to encompass all terms and definitions pertaining to the road performance of pneumatic tires designed for over-the-highway use, such as passenger car, light truck, truck and bus, and motorcycle tires. Not included are terms specific to the performance of agricultural, aircraft, industrial, and other off-highway tires. However, many terms contained in this document also apply to non-highway tires.
Tires will be protagonists in the new European regulations for safety and fuel economy: in 2012 a tire pressure monitoring system will be mandatory for all new vehicles, enabling as natural consequence the development of the so called “intelligent tire”, able to capture all the relevant information of the contact between the road surface and the rubber, a starting point for new functions development to improve safety and reduce fuel consumption of all vehicles. A description of the methodologies that can be used to extract features from the tires, based on the experience of the development of Cyber Tyre, a high performance sensorized tire, is included in this work; comparison with the same information gained thorough ordinary sensors are provided too. The paper also presents some interesting examples of how data, coming from Cyber Tyres, can be exploited to improve the safety margins of a vehicle, preventing the critical operating condition represented by hydroplaning.
The sport-tourer (i.e. touring motorcycle) powered by the 1,352 cm3 engine shown in Fig. 1 was launched by Kawasaki in July 2007. This worldwide model was introduced primarily in Europe and North America. This paper describes the development of the new tourer model whose concept was to create a sport-oriented touring motorcycle. Descriptions include a variable-valve timing mechanism adopted for improving engine performance, a parallel-link type swing-arm adopted for improving vehicle dynamics, as well as a tire pressure monitoring system adopted for the first time on a motorcycle.
This document covers military aircraft wheel and hydraulically actuated brake equipment.
Items per page:
50
1 – 50 of 61