Browse Topic: Tire pressure monitoring systems

Items (71)
The development of the additive manufacturing technology has enabled the design of components with complex structures that were previously unfeasible with conventional techniques. Among them, the Triply Periodic Minimal Surface (TPMS) structures are gaining scientific interest in several applications. Thanks to their high surface-to-volume ratio, lightweight construction, and exceptional mechanical properties, TPMS structures are being investigated for the production of high-performance heat exchangers to be adopted in different industrial fields, such as automotive and aerospace. Another significant advantage of the TPMS structures is their high degree of design flexibility. Each structure is created by replicating a characteristic unit cell in the three spatial dimensions. The three key parameters, namely cell type, cell dimension and wall thickness can be adjusted to provide considerable versatility in the design process. As for the heat exchangers, the variation of these parameters
Torri, FedericoBerni, FabioFontanesi, StefanoMantovani, SaraGiacalone, MauroDefanti, SilvioBassoli, ElenaColombini, Giulia
Accurate tire pressure monitoring system (TPMS) is of great practical importance and the reliability and safety of its power supply module has great concern. The piezoelectric-based surface acoustic wave (SAW) sensor is considered to have great potential in this field because of its passive, wireless and small size advantages. This paper presents the application of passive and wireless SAW sensors for real-time tire condition monitoring. The pressure sensitive structure is optimized and a three-resonator structure is also designed sensing temperature and pressure. Furthermore, a fast detection system is developed to realize high-speed signal acquisition. At last, experiments are executed and the SAW temperature and pressure sensor property is measured. The results show that the designed SAW sensor can realize real-time monitoring of tire condition; the temperature measurement range can reach -40~120°C with an accuracy of ±1°C; the pressure measurement range can reach 0~2MPa with an
Tian, YahuiLi, FanZhang, ZeqinLu, ZixiaoXu, Nan
Several commercial truck OEMs revealed new medium-duty EVs at NTEA's 2023 Work Truck Week (WTW) in Indianapolis, Indiana. Interest in Class 5, 6 and 7 EVs has ramped up rapidly in recent years, and many OEMs are rolling out new models to meet the increased demand
Wolfe, MattGehm, Ryan
The landing gear system is a major and safety critical airframe system that needs to be integrated efficiently to meet the overall aircraft program goals of minimizing the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large-scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft. The document structure is divided into four sections: Landing Gear System Configuration Requirements (Section 3) Landing Gear System Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear System Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements. Structural elements include shock struts, truck beams, torsion
A-5 Aerospace Landing Gear Systems Committee
This glossary of tire military/industry represents the latest state-of-the-art terms and definitions for military use. This SAE Recommended Practice shall remain open for comments from the reader and shall also be reviewed and updated periodically. Many similar terms and definitions were reviewed from which the ones best applied to military use were selected. It is the purpose of this task force to provide technical definitions in present day use
Truck and Bus Tire Committee
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells
A-5 Aerospace Landing Gear Systems Committee
The intent of this SAE Aerospace Information Report (AIR) is to inform the aerospace industry about various systems available to monitor the inflation pressure and/or temperature of an aircraft tire. The tire pressure monitoring system (TPMS), with cockpit display, is the most widely used of all aircraft tire monitoring systems, and is detailed in this document more than other systems
A-5 Aerospace Landing Gear Systems Committee
Tire inflation pressure has a significant impact over vehicle driving dynamics, fuel consumption as well as tire life. Therefore, continuous monitoring of tire pressure becomes imperative for ride comfort, safety and optimum vehicle handling performance. Two types of tire pressure monitoring systems (TPMS) used by vehicles are - direct and indirect TPMS. Direct systems deploy pressure sensors at each wheel and directly send pressure value to the vehicle Controller Area Network (CAN). Indirect sensors on the other hand use the information from already existing sensors and some physics-based equations to predict the value of tire pressure. Direct TPMS tend to be more accurate but have higher cost of installation while indirect TPMS comes with a minimum cost but compromised accuracy. A digital proof-of-concept study for indirect TPMS development of a non-ESP vehicle based on machine learning (ML) technique is elaborated in this paper. The study aims to propose a methodology for
Sachan, RichaIqbal, Shoaib
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires and the maintenance of the operating environment to ensure the safety of support personnel and the safe operation of the aircraft
A-5C Aircraft Tires Committee
Tire pressure monitoring system (TPMS) is becoming ubiquitous in modern day vehicles with advanced safety and driver assist systems and plays a key role in predictive maintenance. One of the key challenges to realize an efficient TPMS system is to ensure good antenna coupling between the reader antenna in the cabin or on the roof of the vehicle and the antennas in the tires. Understanding the different external factors that affect the antenna coupling is vital to realize an efficient design. Computer aided simulations on antenna coupling is a cost-effective method to reduce the chances of failure before a TPMS is deployed in an actual vehicle. In this work, a computational approach is presented to optimize the antenna coupling and hence the link budget between the reader antennas and the TPMS antennas at 915 MHz. This is achieved by employing machine learning based optimization using commercially available tools, Altair’s HyperStudy and Altair’s Feko. A powerful combination of machine
Karuppuswami, SaranrajReddy, C. J.
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following commercial aircraft types; wide body jet airliners, narrow body jet airliners, and turboprop/commuter aircraft and the following military aircraft types; fighter, bomber, cargo, attack, surveillance, tanker and helicopter categories. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems. Future revisions of this document will add aircraft as they enter into service
A-5 Aerospace Landing Gear Systems Committee
This SAE Aerospace Information Report (AIR) will review new landing gear (engine off) taxi system technologies currently being developed by various companies and describe the basic design concepts and potential benefits and issues. This AIR will identify the associated systems that could be affected by this new technology. The document will review basic design and operational requirements, failure modes and identify system certification requirements that may need to be addressed. The technology is evolving as this paper is being written and the data present is currently up to date as of 2015
A-5 Aerospace Landing Gear Systems Committee
The function of a multifunctional display (MFD) system is to provide the crew access to a variety of data, or combinations of data, used to fly the aircraft, to navigate, to communicate, and to manage aircraft systems. MFDs may also display primary flight information (PFI) as needed to insure continuity of operations. This document sets forth design and operational recommendations concerning the human factors considerations for MFD systems. The MFD system may contain one or more electronic display devices capable of presenting data in several possible formats. MFDs are designed to depict PFI, navigation, communication, aircraft state, aircraft system management, weather, traffic, and/or other information used by the flight crew for command and control of the aircraft. The information displayed may be combined to make an integrated display or one set of data may simply replace another. The information contained in this document can be applied to the design of all MFDs, including
G-10EAB Executive Advisory Group
Knowledge of the forces on the vehicle is necessary for designing most of the Baja vehicle subsystems, however little knowledge of the dynamic forces on small off-road vehicles is available. To measure the vertical and longitudinal forces on the tires of a Baja vehicle, a custom strain gauge system was designed and combined with Quarq tire pressure sensors while running in off-road conditions. The strain gauge system consisted of a half-bridge Wheatstone bridge of 350 Ohm resistors in bending, feeding the change in voltages into the 20-bit ADC of a Cypress Semiconductor PSoC 5LP microcontroller for data interpretation and then recorded onto an SD card for later analysis. Quarq Tyrewiz tire pressure sensors were placed on both the front and rear tires and the recorded pressures were converted to forces on the tire through calibration. Experimental data was found to agree with suspension models. Data from the strain gauges and tire pressure sensors are in agreement and when used to
Carranza, RonaldRico, AdamLeguizamon, JuanBachman, John Christopher
A tire pressure monitoring system (TPMS) is a means to electronically measure and report the current tire pressure. Some systems are capable of transmitting the information to the flight deck while other systems are for use on the ground by maintenance personnel (only). This SAE Aerospace Recommended Practice (ARP) document is intended to establish overall component and system function guidelines and minimum performance levels for a TPMS. The system should visually indicate the tire inflation pressure status. These guidelines include, but are not limited to: a) Design recommendations for system components, which: 1 monitor tire inflation, and, 2 are located in/on the tire/wheel assembly, landing gear axle, and/or aircraft avionics compartment. b) Recommended performance and safety guidelines for a TPMS
A-5 Aerospace Landing Gear Systems Committee
To establish overall performance guidelines, test methods, and minimum performance levels for a TPMS. The system shall visually indicate the tire inflation pressure status. These guidelines include, but are not limited to: a A test methodology for a device which monitors tire inflation, that is located in/on the tire/wheel environment. b Recommended performance guidelines for a TPMS
Highway Tire Committee
This terminology aims to encompass all terms and definitions pertaining to the road performance of pneumatic tires designed for over-the-highway use, such as passenger car, light truck, truck and bus, and motorcycle tires. Not included are terms specific to the performance of agricultural, aircraft, industrial, and other off-highway tires. However, many terms contained in this document also apply to non-highway tires
Highway Tire Committee
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber (servicing), opportunities for corrosion detection, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. Landing gear tire condition and tire pressure monitoring are detailed in ARP6225, AIR4830, and ARP6137, respectively. Aircraft Brake Temperature Monitoring Systems (BTMS) are detailed in AS1145
A-5 Aerospace Landing Gear Systems Committee
Tire inflation pressure has a relevant impact on fuel consumption and tire wear, and therefore affects both CO2 emissions and the total cost of ownership (TCO). The latter is extremely important in the case of commercial vehicles, where the cost of fuel is responsible for about 30% of the TCO. A possible advanced central tire inflation system, which is able to inflate and deflate tires autonomously, as part of a smart energy management system and as an active safety device, has been studied. This system allows misuse due to underinflation to be avoided and adapts the tires to the current working conditions of the vehicle. For instance, the tire pressure can be adapted according to the carried load or during tire warm-up. An on board software is able to evaluate the working conditions of the vehicle and select the tire pressure that minimizes the energy expense, the TCO, or the braking distance, according to a multi-objective optimization strategy. A simulation tool has been set up to
D'Ambrosio, StefanoMameli, Elia FrancescoVitolo, RobertoCalaon, IvanCapitelli, EnricaNosenzo, VladiSarcoli, Alessio
Knowledge of the vehicle mass is an important factor to measure the tire inflation pressure indirectly. To estimate the mass change from the wheel speed signals, the novel zero crossing method (ZCM) was proposed. The accuracy of the proposed method was demonstrated using the logged vehicle data, and the compatibility with indirect tire pressure monitoring system (iTPMS) was evaluated by statistical analysis. Therefore, the proposed ZCM for vehicle mass estimation can expect technological advances in iTPMS and chassis control systems
Lee, SangHeonKim, TaeHunShin, SeungHwanLim, YangNam
Tire Pressure Monitoring System (TPMS) sensor measures air pressure and temperature in the tire and transmits tire information as wireless messages to TPMS central unit which consists of Radio Frequency (RF) receiver. TPMS central unit needs to determine the exact sensor locations (e.g. Front Left, Front Right, Rear Left or Rear Right) in order to correctly identify the location of the tire with pressure out of the desired range. The identified tire with abnormal pressure is highlighted on dash board in the car. Thus, determination of the location of a particular tire made automatically by the TPMS system itself or tire localization is required. TPMS tire localization is implemented currently in several methods. A new method is proposed in this paper. The proposed method uses at least two RF transceivers as repeaters. Each transceiver receives wireless messages (eg. Pressure, temperature, sensor ID) from the nearest TPMS sensor and re-transmits them with RF transceiver identity to TPMS
Gow, FelixGuan, LifengPark, Jooil
This document is a supplement to SAE/USCAR 17 and is intended to give recommended usages for one and two-way RF connectors and dimensional requirements for 2-way RF connectors and hybrid (RF & DC power) connectors which are not currently specified elsewhere. The radio frequency (RF) connector interface specified herein is suited for unsealed and sealed automobile applications up to 6 GHz and is intended for in-line, board mount, device mount, straight or angled applications. Dimensional requirements are specified in this document to ensure interchangeability. Compliance with the dimensional requirements of this specification will not guarantee interoperability between different suppliers mating connectors. It is the supplier responsibility to ensure RF performance requirements are met with other suppliers mating connectors. Performance requirements are specified in SAE/USCAR-2, and in SAE/USCAR-17
USCAR
The landing gear system is a major airframe system that needs to be integrated very efficiently to minimize the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft and is divided into four sections: Landing Gear Configuration Requirements (Section 3) Landing Gear Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements. Structural elements include shock struts, braces, fittings, pins, wheels, tires and brakes. The subsystem elements include the retraction/extension system (both
A-5 Aerospace Landing Gear Systems Committee
Published information on studies of something so critical to safety as passenger vehicle tire pressures can be found [1, 2]; however, they only account for rolling tires. Studies related to spare tire pressures are lacking. This paper is the result of measurements on 150+ vehicles and the most surprising results are presented regarding the influence of Tire Pressure Monitoring Systems (TPMS) and the new spare tire locations and use. A statistical study was performed on the collected data to determine the correlation between tire pressures, vehicle age and TPMS. One particular topic of investigation was the relationship between various factors that influence spare tire pressure. Some newer models, particularly some mini-vans, have placed the spare tire in an unusual and inconvenient place for regular maintenance. Based on the data collected, TPMS has a positive influence on rolling tires but not on spare tires. The results support the need for TPMS to also monitor spare tire pressures
Popat, JugalNabar, AneeshRead, MeighanFu, ChenZhang, ChunhuiKausik, GalabPatel, HarshTkacik, Peter Thomas
Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis. Using the corrected and selected vibration noise, the resonance frequency of the tire vibration system is identified by Maximum Entropy Spectral
Zhao, JianSu, JingZhu, BingShan, Jingwei
This paper presents findings based on the examination of time-series tire pressure data. Tire pressure is important to vehicle safety due to its effects on vehicle handling and stability, as well as the impact that inappropriate tire pressure has on tire wear and tire failures. Previous research such as NHTSA’s 2001 Tire Pressure Special Study sampled vehicle populations and recorded tire pressures at a single point in time. Such studies yield important insights into tire pressures on individual vehicles and across the vehicle populations, but cannot provide insights into the behavior of tire pressures over time. The data presented in this paper was measured using the tire pressure monitoring system (TPMS) data from Tesla Model S vehicles. Using Tesla’s on-board diagnostic data logging and remote data retrieval capabilities, the time history of each vehicle’s tire pressures was recorded and fleet-wide data was analyzed. The resulting analysis provides insights into tire pressure
Schwall, MatthewGarg, AnmolShiverick, JasonConley, Matthew
Tire Pressure Monitoring System (TPMS) has become a popular system due to regulation in many countries. TPMS consists of sensors that measure air pressure and temperature in the tires. Each sensor transmits tire information to TPMS central unit for display purpose via RF. Commercial trailers having bodies longer than 7 m require RF repeaters to increase the data transmission range. Located near to rear wheels, RF repeater receives sensor signal in the rear wheels and transmits the signal to TPMS central unit. In this paper, we discuss RF repeater which transmits at multiple frequencies in order to increase signal reception. On TPMS central unit, RF receiver is able to tune to receive frequencies used in sensors and RF repeater. Other method for improving reception is to transmit same payload multiple times at same frequency as that of sensor. In the paper, other important specifications are discussed as RF repeater design is concerned. A user’s case of RF repeater is implemented. Time
Gow, FelixGuan, LifengPark, JooilKim, Jaekwon
A tire is one of the most important performance and safety components in a two wheeler. An incorrect tire pressure not only impacts overall performance of a vehicle but also safety and overall fuel economy. The main purpose for appropriate tire pressure is to uniformly distribute vehicle load across the tire contact patch thereby providing an optimal contact between tire and road, effective handling, passenger comfort, maximum tire life and overall vehicle safety. A Tire Pressure Monitoring System (TPMS) measures a range of air pressure and alerts for proper tire pressure maintenance. Currently fully fledged tire pressure sensing systems are used in passenger cars and commercial vehicles. The use of such system in a two wheeler is yet to be recognized as precondition instead of an added attribute. This paper presents an objective methodology, based on analytical simulation and testing, developed in order to derive the optimal condition for front and rear tire pressures to achieve best
Bansal, AtulJain, AnoopSrivastava, PrateekTiwary, Anant KumarDear, Rishi Kumar
Starting from the USA and followed by the European Union, legal requirements concerning “Tire Pressure Monitoring Systems” (TPMS) for passenger cars and light trucks will be introduced in China as well and therefore in the third of the three largest automobile markets worldwide. Changes of pressure dependent physical tire properties such as dynamic roll radius and a certain tire eigenfrequency, which are included in the ESC-wheel speed signals, indicates pressure loss in an indirect manner. Systems with corresponding working principles are called “indirect Tire Pressure Monitoring System” (iTPMS). Since the tire is a structural element with varying characteristics according to the design parameters, the roll radius and frequency behavior due to pressure loss is variable as well. As a consequence, tires have to be evaluated regarding there compatibility to iTPMS during the vehicle development process. In order to firstly reduce the testing effort on the complete vehicle and secondly to
Suender, RobertProkop, GüntherRoscher, Thomas
Several wireless systems such as Dedicated Short Range Communication (DSRC), cellular, Wi-Fi, Bluetooth, and the Tire Pressure Monitoring System (TPMS) can be found on modern vehicles. In the future, Software Defined Radio (SDR) technology could be integrated into automobiles to increase the efficiency and adaptability of wireless communications systems. SDR is also a powerful tool for designing and testing new communications protocols. However there are also some security considerations associated with SDR. This paper will review some advantages of using SDR technology in the automotive domain as well as potential security issues. The authors are currently conducting research into the use of SDR technology to model wireless systems and investigate security threats in modern vehicular systems
Anderson, BrianBrooks, MarkWilson, RyanSturgeon II, Purser K.
This document covers military aircraft wheel and hydraulically actuated brake equipment
A-5A Wheels, Brakes and Skid Controls Committee
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells
A-5 Aerospace Landing Gear Systems Committee
This terminology aims to encompass all terms and definitions pertaining to the road performance of pneumatic tires designed for over-the-highway use, such as passenger car, light truck, truck and bus, and motorcycle tires. Not included are terms specific to the performance of agricultural, aircraft, industrial, and other off-highway tires. However, many terms contained in this document also apply to non-highway tires
Highway Tire Committee
This SAE Aerospace Information Report (AIR) contains regulatory and guidance information related to airplane wheels, tires, and brakes. It contains certain Civil Air Regulations (CAR) and Federal Aviation Regulations (formerly referred to as FARs) from Title 14 Code of Federal Regulations (CFR) in their current version as well as the historical versions. This gives the reader an ability to assemble certain CAR/CFR parts as they existed at any date in the past (referred to as a Regulatory Basis). A certain amount of preamble explanatory material is included, which led to the regulatory rule changes (Amendments to the CFR
A-5 Aerospace Landing Gear Systems Committee
Items per page:
1 – 50 of 71