Browse Topic: On-board diagnostics (OBD)

Items (847)
In order to comply with the tightening of global regulations on automobile exhaust gas, further improvements to exhaust gas control catalysts and upgrades to on-board diagnostics (OBD) systems must be made. Currently, oxygen storage capacity (OSC) is monitored by front and rear sensors before and after the catalyst, and deterioration is judged by a decrease in OSC, but it is possible that catalyst deterioration may cause the rear sensor to detect gas that has not been sufficiently purified. It is important to observe the activity changes when the catalyst deteriorates in more detail and to gain a deeper understanding of the catalyst mechanism in order to create guidelines for future catalyst development. In this study, we used a μ-TG (micro thermogravimetric balance) to analyze in detail how differences in design parameters such as the type of precious metal, detection temperature, and mileage (degree of deterioration) affect the OSC rate in addition to the OSC of the ceria-based
Hamada, ShotaUegaki, ShinyaTanabe, HidetakaNakayama, TomohitoJinjo, ItsukiKurono, SeitaOishi, ShunsukeNarita, KeiichiOnishi, TetsuroYasuda, KazuyaMatsumura, DaijuTanaka, Hirohisa
This paper presents findings on the use of data from next-generation Tire Pressure Monitoring Systems (TPMS), for estimating key tire states such as leak rates, load, and location, which are crucial for tire-predictive maintenance applications. Next-generation TPMS sensors provide a cost-effective and energy-efficient solution suitable for large-scale deployments. Unlike traditional TPMS, which primarily monitor tire pressure, the next-generation TPMS used in this study includes an additional capability to measure the tire's centerline footprint length (FPL). This feature offers significant added value by providing comprehensive insights into tire wear, load, and auto-location. These enhanced functionalities enable more effective tire management and predictive maintenance. This study collected vehicle and tire data from a passenger car hatchback equipped with next-generation TPMS sensors mounted on the inner liner of the tire. The data was analyzed to propose vehicle-tire physics
Sharma, SparshSon, Roman
On-board diagnosis (OBD) of gasoline vehicle emissions is detected by measuring the fluctuations of the rear oxygen sensor due to the time-dependent deterioration of the oxygen storage capacity (OSC) contained in the automotive catalyst materials. To detect OBD in various driving modes of automobiles with an order of magnitude higher accuracy than before, it is essential to understand the OSC mechanism based on fundamental science. In this study, time-resolved dispersive X-ray absorption fine structure (DXAFS) using synchrotron radiation was used to carry out a detailed analysis not only of the OSC of ceria-based complex oxides, which had previously been roughly understood, but also of how differences in design parameters such as the type of precious metals, reducing gases (CO and H2), detection temperatures, and mileages (degree of deteriorations) affect the OSC rate in a fluctuating redox atmosphere. A fundamental characteristic was clearly demonstrated in ceria-based complex oxides
Tanaka, HirohisaMatsumura, DaijuUegaki, ShinyaHamada, ShotaAotani, TakuroKamezawa, SaekaNakamoto, MasamiAsai, ShingoMizuno, TomohisaTakamura, RikuGoto, Takashi
The problem of monitoring the parametric failures of a traction electric drive unit consisting of an inverter, a traction machine and a gearbox when interacting with a battery management system has been solved. The strategy for solving the problem is considered for an electric drive with three-phase synchronous and induction machines. The drive power elements perform electromechanical energy conversion with additional losses. The losses are caused by deviations of the element parameters from the nominal values during operation. Monitoring gradual failures by additional losses is adopted as a key concept of on-board diagnostics. Deviation monitoring places increased demands on the information support and accuracy of mathematical models of power elements. We take into account that the first harmonics of currents and voltages of a three-phase circuit are the dominant energy source, higher harmonics of PWM appear as harmonic losses, and mechanical losses in the rotor and gearbox can be
Smolin, VictorGladyshev, SergeyTopolskaya, Irina
Triply periodic minimal surface (TPMS) structure, demonstrates significant advantages in vehicle design due to its excellent lightweight characteristics and mechanical properties. To enhance the mechanical properties of TPMS structures, this study proposes a novel hybrid TPMS structure by combining Primitive and Gyroid structures using level set equations. Following this, samples were fabricated using selective laser sintering (SLS). Finite element models for compression simulation were constructed by employing different meshing strategies to compare the accuracy and simulation efficiency. Subsequently, the mechanical properties of different configurations were comprehensively investigated through uniaxial compression testing and finite element analysis (FEA). The findings indicate a good agreement between the experimental and simulation results, demonstrating the validity and accuracy of the simulation model. For TPMS structures with a relative density of 30%, meshing with S3R
Tang, HaiyuanXu, DexingSun, XiaowangWang, XianhuiWang, LiangmoWang, Tao
This paper focuses on the development of a tire thermal model for automotive applications, addressing the challenge of accurately predicting tire temperatures on different layers of the tire, under various driving conditions. The primary goal is to enhance the understanding of tire temperature behavior to improve safety, performance, and durability. The research utilizes a physics 1-D model for the tire, from which a system of differential equations, describing the interaction between different layers of the tire, is derived. Furthermore, a state observer is used to estimate tire temperatures, using Tire Pressure Monitoring System (TPMS) measurements to correct model predictions. In particular, the TPMS measurements are assumed to be sufficient to exclude the additional thermal contributions coming from the rims and disk brakes, which simplifies the model, making it more suitable for real-time applications. A calibration procedure is defined for deriving the model parameters, based on
Longobardi, ArmandoBalaga, Sanjaylabella, MarioGorine, Mohamed El Amine
Triply Periodic Minimal Surface (TPMS) structures offer the possibility of reinventing structural parts and heat exchangers to obtain higher efficiency and lighter or even multi-functional components. The crescent global climate concern has led to increasingly stringent emissions regulations and the adoption of TPMS represents a resourceful tool for OEMs to downsize and lighten mechanical parts, thereby reducing the overall vehicle weight and the fuel consumption. In particular, TPMS structures are gaining growing interest in the heat exchanger field as their morphology allows them to naturally house two separate fluids, thus ensuring heat transfer without mixing. Moreover, TPMS-based heat exchangers can offer countless possible design configurations. These structures are obtained by periodic repetitions in the three spatial dimensions of a specific unit cell with defined dimensions and wall thickness. By tuning their characteristic parameters, the structure can be tailored to obtain
Torri, FedericoBerni, FabioMartoccia, LorenzoMarini, AlessandroMerulla, AndreaGiacalone, MauroColombini, Giulia
The generation of data plays a vital role in machine learning (ML) techniques by providing the foundation for training and improvement of forecast models. As one application area for these models, in-vehicle systems, like vehicle diagnostics, have the potential to enhance the reliability and durability of vehicles by utilizing ML models in the testing phases. However, acquiring a high volume of quality onboard diagnostics (OBD) data is time-consuming and poses challenges like the risk of exposing sensitive information. To address this issue, synthetic data generation offers a promising alternative that is already in use in other domains. Thereby, synthetic data allows the exploitation of knowledge found in original data, ensuring the privacy of sensitive data, with less time costs of data acquisition. The application of such synthetically generated data could be found in predictive maintenance, predictive diagnostics, anomaly detection, and others. For this purpose, the research
Vučinić, VeljkoHantschel, FrankKotschenreuther, Thomas
SAE J1978-2 specifies a complementary set of functions to be provided by an OBD-II scan tool. These functions provide complete, efficient access to all regulated OBD services on any vehicle that is compliant with SAE J1979-2 and SAE J1979-3 The content of this document is intended to satisfy the requirements of an OBD-II scan tool as required by current U.S. OBD regulations. This document specifies: A means of establishing communications between an OBD-equipped vehicle and an OBD-II scan tool. A set of diagnostic services to be provided by an OBD-II scan tool in order to exercise the services defined in SAE J1979-2. The presentation of the SAE J1978 document family, where SAE J1978-2 covers second generation protocol functionality defined in SAE J1979-2, and SAE J1978-1 covers first generation protocol functionality defined in SAE J1979 and protocol determination for both SAE J1979 and SAE J1979-2. The SAE J1978 document family does not preclude the inclusion of additional capabilities
Vehicle E E System Diagnostic Standards Committee
This SAE Information Report describes the collection of IUMPR data required by the heavy-duty onboard diagnostic regulation 13 CCR § 1971.1 (l)(2.3.3), using SAE J1939-defined messages incorporated in a suite of software functions.
Truck and Bus Control and Communications Network Committee
This SAE Recommended Practice supersedes SAE J1930 MAR2017 and is technically equivalent to ISO 15031-2. This document is applicable to all light-duty gasoline and diesel passenger vehicles and trucks, and to heavy-duty gasoline vehicles. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair databases, underhood emission labels, and emission certification applications. This document should be used in conjunction with SAE J1930DA Digital Annexes, which contain all of the information previously contained within the SAE J1930 tables. These documents focus on diagnostic terms applicable to electrical/electronic systems, and therefore also contain related mechanical terms, definitions, abbreviations, and acronyms. Even though the use and appropriate updating of these documents is strongly encouraged, nothing in these documents should be construed as prohibiting the introduction of a term, abbreviation, or
Vehicle E E System Diagnostic Standards Committee
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly calibrated and validated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and previously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails. Thus, it is imminent to build simulation models which can reliably reproduce failures of components like the compressor, recirculation pump
Pandit, Harshad RajendraDimitrakopoulos, PantelisShenoy, ManishAltenhofen, Christian
Android applications have historically faced vulnerabilities to man-in-the-middle attacks due to insecure custom SSL/TLS certificate validation implementations. In response, Google introduced the Network Security Configuration (NSC) as a configuration-based solution to improve the security of certificate validation practices. NSC was initially developed to enhance the security of Android applications by providing developers with a framework to customize network security settings. However, recent studies have shown that it is often not being leveraged appropriately to enhance security. Motivated by the surge in vehicular connectivity and the corresponding impact on user security and data privacy, our research pivots to the domain of mobile applications for vehicles. As vehicles increasingly become repositories of personal data and integral nodes in the Internet of Things (IoT) ecosystem, ensuring their security moves beyond traditional issues to one of public safety and trust. To
Zhang, LinxiMa, Di
The University of Detroit Mercy Vehicle Cyber Engineering (VCE) Laboratory together with The University of Arizona is supporting Secure Vehicle Embedded Systems research work and course projects. The University of Detroit Mercy VCE Laboratory has established several testbeds to cover experimental techniques to ensure the security of an embedded design that includes: data isolation, memory protection, virtual memory, secure scheduling, access control and capabilities, hypervisors and system virtualization, input/output virtualization, embedded cryptography implementation, authentication and access control, hacking techniques, malware, trusted computing, intrusion detection systems, cryptography, programming security and secure software/firmware updates. The VCE Laboratory testbeds are connected with an Amazon Web Services (AWS) cloud-based Cyber-security Labs as a Service (CLaaS) system, which allows students and researchers to access the testbeds from any place that has a secure
Zachos, MarkSatam, PratikNaama, Rami
Sumitomo Rubber Industries first announced its Sensing Core technology in 2017. But it wasn't until 2024 that the Japanese tire maker used its debut appearance at CES to promote the sensor-free signal analyzer. Sumitomo president and CEO Satoru Yamamoto said the company exhibited at CES, “to expand our partner companies and to get more drivers and companies to know about this sensing core technology.”
Blanco, Sebastian
In the commercial vehicle business, vehicle availability is a pivotal factor for the profitability of the customer. Nonetheless, the intricate nature of the technologies embedded in modern day engines and exhaust after-treatment systems coupled with the variability of the duty cycles of end applications of the vehicles imposes added challenges on the vehicle's sustained performance and reliability. In this context, the ability to predict potential failures through tools like telematics and real-time data analytics presents a significant opportunity for original equipment manufacturers (OEMs) to deliver distinctive value to their customers. A modern-day commercial vehicle has a minimum of 5 micro controllers managing the performance and performing the on-board diagnostics of various sub-systems like engine, after treatment system, transmission, Cab and stability controls, the driver interface, and advisory systems etc., They operate independently and also sync with each other as master
K.S, Guru PrasannaD.V, RamkumarS, KannanJ, Narayana ReddyK.R, KarthikeyanD., SomsekarM.D, SenthilkumarN, Augustin SelvakumarS.P, Suprabhan
BS6.1 emission standards were implemented in India in 2020 followed by BS6.2 which added more controls on emission limits. For BS6.2 OBD (On Board Diagnostics) and RDE (Real Driving Emission) were added on to the existing BS6.1 emissions. Emission control changes usually need addition of new parts, calibration changes and durability requirements. For the current 1.5L, 3-cylinder diesel engine an pSCR (Passive Selective Catalytic Reduction) brick was added for control of NOx for meeting RDE. For meeting OBD requirements PM (Particulate Matter) and NOx sensors were added in the cold end pipe along with calibration changes to meet the BS6.2 norms. In this paper we will discuss on the design aspects of sensors and pSCR only. The sensor and pSCR positioning plays vital role in meeting the legislative requirements and to ensure the ease of assembly and durability of the parts. We discuss on the various options explored for positioning, the constraints of sensor application and the importance
Vinaya Murthy, VijayendraRengaraj, ChandrasekaranDharan R, BharaniSasikumar, M
The BS6 norms (phase 1) were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase 2 of the BS6 norms, which came into effect on April 1, 2023. In accordance with the regulation requirement, effective performance of after treatment systems like DPF and SCR demands critical hardware implementation and robust monitoring strategies in the extended operating zone. Effective OBD monitoring of DPF, which is common to all BSVI certified vehicles, such that the defined strategy detects the presence or absence of the component is imperative. A robust monitoring strategy is developed to detect the presence of the DPF in the real world incorporating the worst possible driving conditions including idling, and irrespective of other environmental factors subject to a location or terrain. The differential pressure sensor across the DPF is used to study the actual pressure drop across the DPF. Additional for BS 6 (phase 2) PM sensor becomes an important part to keep the
Sharma, PrashantHareesh, SangarajuV, SuryanarayananPalanisamy, KrishnarajP, JagdesanRathiya, Akash
SAE J1978-1 specifies a complementary set of functions to be provided by an OBD-II scan tool. These functions provide complete, efficient, and safe access to all regulated OBD (on-board diagnostic) services on any vehicle which complies to SAE J1978-1 The SAE J1978-1 content of this document is intended to satisfy the requirements of an OBD-II scan tool as required by current U.S. on-board diagnostic (OBD) regulations. This document specifies: A means of establishing communications between an OBD-equipped vehicle and an OBD-II scan tool. A set of diagnostic services to be provided by an OBD-II scan tool in order to exercise the services defined in SAE J1979 and SAE J1979-2. The presentation of the SAE J1978 document family, where SAE J1978-1 covers first generation protocol functionality defined in SAE J1979, and SAE J1978-2 covers second generation protocol functionality defined in SAE J1979-2. The SAE J1978 document family does not preclude the inclusion of additional capabilities or
null, null
Recent legislations require very low soot emissions downstream of the particulate filter in diesel vehicles. It will be difficult to meet the new more stringent OBD requirements with standard diagnostic methods based on differential sensors. The use of inexpensive and reliable soot sensors has become the focus of several academic and industrial works over the past decade. In this context, several diagnostic strategies have been developed to detect DPF malfunction based on the soot sensor loading time. This work proposes an advanced online diagnostic method based on soot sensor signal projection. The proposed method is model-free and exclusively uses soot sensor signal without the need for subsystem models or to estimate engine-out soot emissions. It provides a comprehensive and efficient filter monitoring scheme with light calibration efforts. The proposed diagnostic algorithm has been tested on an experimentally validated simulation platform. 2D signatures are generated from soot
Youssef, Bilal
This document is intended to satisfy the data reporting requirements of standardization regulations in the United States and Europe, and any other market that may adopt similar requirements in the future. This document specifies: a Message formats for request and response messages. b Timing requirements between request messages from external test equipment and response messages from vehicles, and between those messages and subsequent request messages. c Behavior of both the vehicle and external test equipment if data is not available. d A set of diagnostic services, with corresponding content of request and response messages. e Standardized source and target addresses for clients and vehicle. This document includes capabilities required to satisfy OBD requirements for multiple regions, model years, engine types, and vehicle types. At the time of publication many regional regulations are not yet final and are expected to change in the future. This document makes no attempt to interpret
null, null
The aim of this paper is to analyze the effects of different driving styles and patterns onboard battery packs (BPs) supplying electric vehicles. The analysis is carried out by using real urban driving cycles, acquired through vehicle On Board Diagnostic Port (OBDP), and a Matlab-Simulink scaled BP model, in which lithium BP has been parametrized and validated through specific experimental tests. The results have been mainly focused on the evaluations of BP State of Health (SoH) and capacity fading decreasing during its lifetime at several critical conditions. In particular, these evaluations have allowed critical driving and environmental operative conditions to be identified and highlighted. The obtained results provide useful information for both producers of Battery Electric Vehicle (BEV) Energy Storage Systems (ESS) in the design stage, and for artificial intelligence driver support systems, mainly focused on extending overall vehicle life.
Capasso, ClementeIannucci, LuigiSequino, LuigiVaglieco, Bianca MariaVeneri, Ottorino
The proposed Euro 7 emission standard foresees that the emission behaviour of Euro 7 vehicles is monitored via an on-board monitoring (OBM) system. In Euro 7 vehicles, OBM systems will monitor the emissions of nitrogen oxides (NOX), ammonia (NH3) and particulate matter (PM) for every trip through a combination of measured and modelled data. Sensors employed to support on-board diagnostics (OBD) in current vehicles may be used to support OBM. According to the Euro 7 OBM concept presented in this paper, OBM will serve a dual purpose: the first is to warn the user of a vehicle about the need to perform repairs on the engine or the pollution control systems when these are needed. If these repairs are not performed in a timely manner, the OBM system will be able to ultimately prevent engine restart, akin to the existing low-reagent driver warning system in some compression ignition vehicles. The second purpose of OBM is to monitor the compliance of vehicle types with the emission limits. To
Franco, VicenteDilara, PanagiotaHennig, NilsManara, DarioForloni, FabrizioShort, IanLigterink, NorbertEhrly, MarkusKontses, DimitriosSamaras, Zissis
The upcoming Euro 7 regulation introduces the concept of continuous On-Board (emission) Monitoring (OBM), while On-Board Fuel/Energy Consumption Monitoring (OBFCM) is already an integral part of modern vehicles. The current work aims to assess whether on-board data could provide sufficient information to characterize real-world vehicle performance and emissions. Nine Euro 6d-ISC-FCM passenger cars were used, covering a wide range of powertrain technologies, from conventional gasoline and diesel to hybrid (HEV) and plug-in hybrid (PHEV) electric vehicles. Three vehicles were thoroughly tested in the laboratory and on the road, aiming at evaluating in detail the on-board data monitoring system. The evaluation concerned OBFCM device recordings of fuel consumed and distance travelled, as well as tailpipe NOx emissions and exhaust mass flow rate. Four vehicles were monitored for two weeks under real-world operation, while a diesel and a gasoline PHEV have been monitored for approximately
Dimaratos, AthanasiosKontses, DimitriosDoulgeris, StylianosZacharof, NikiforosKeramidas, ArseniosStamos, GeorgiosPapageorgiou-Koutoulas, AlexandrosSamaras, Zissis
The development of the additive manufacturing technology has enabled the design of components with complex structures that were previously unfeasible with conventional techniques. Among them, the Triply Periodic Minimal Surface (TPMS) structures are gaining scientific interest in several applications. Thanks to their high surface-to-volume ratio, lightweight construction, and exceptional mechanical properties, TPMS structures are being investigated for the production of high-performance heat exchangers to be adopted in different industrial fields, such as automotive and aerospace. Another significant advantage of the TPMS structures is their high degree of design flexibility. Each structure is created by replicating a characteristic unit cell in the three spatial dimensions. The three key parameters, namely cell type, cell dimension and wall thickness can be adjusted to provide considerable versatility in the design process. As for the heat exchangers, the variation of these parameters
Torri, FedericoBerni, FabioFontanesi, StefanoMantovani, SaraGiacalone, MauroDefanti, SilvioBassoli, ElenaColombini, Giulia
Next-generation vehicle electrical architectures will be based on highly sophisticated domain controllers called HPCs (high-performance computers). These HPCs are more alike gaming PCs than as the traditional ECUs (electronic control units). Today’s diagnostic communication protocol, e.g., UDS (Unified Diagnostic Services, ISO 14229-1) was developed for ECUs and is not fit to be used for HPCs. There is a new protocol being developed within ASAM, SOVD (service-oriented vehicle diagnostics), which is based on a RESTful API (REpresentational State Transfer Application Programming Interface) sent over http (hypertext transfer protocol). But OBD (OnBoard Diagnostic) under the emissions regulation is not yet updated for this shift of protocols and therefore vehicle manufacturers must support older OBD protocols (e.g., SAE J1979-2) during the transition phase. Another problem is that some of the software packages may fall under the DEC-ECU (diagnostic or emission critical electronic control
Pauli, Joakim
On-board diagnostics (OBD) systems support the protection of the environment against harmful pollutants such as carbon monoxide (CO), nitrogen oxide (NOx), hydrocarbons (HC) and particulate matters (PM) emitted by combustion engines. OBD regulations require passenger cars and light-, medium- and heavy-duty trucks to support a minimum set of diagnostic information to external (off-board) “generic” test equipment. For the purpose of communication, both the test equipment and the vehicle must support the same communication protocol stack. The communication protocol SAE J1979, also known as ISO 15031, that has been in use for decades will be replaced by SAE J1979-2 for vehicles with combustion engines and by SAE J1979-3 for zero-emission-vehicle (ZEV) propulsion systems.
Exhaust emission standards for road vehicles require on-board diagnostics (OBD) of all comprehensive powertrain components (CCMs) impacting pollutant emissions. The legislation defines the generic malfunction criteria and pollutant threshold limits to trigger the component functional degradation. The electric drivetrain in xEV (more than one propulsion energy converter) applications substitutes or supports the internal combustion engine (ICE) operation with electric machine (EM) power. Malfunctions in the electric drivetrain will lead to an increase in ICE power demand. Hence, the electric drive system is classified as a comprehensive component in the OBD legislation. The regulation defines monitoring of the EM performance. The malfunctions that could prevent the EM(s) from properly operating emission control strategies, including any ICE control activation or electric drivetrain performance degradation, should be monitored by the OBD system. This work demonstrates an approach to
Soundara Rajan, RagupathiRichert, FelixPischinger, Stefan
Accurate tire pressure monitoring system (TPMS) is of great practical importance and the reliability and safety of its power supply module has great concern. The piezoelectric-based surface acoustic wave (SAW) sensor is considered to have great potential in this field because of its passive, wireless and small size advantages. This paper presents the application of passive and wireless SAW sensors for real-time tire condition monitoring. The pressure sensitive structure is optimized and a three-resonator structure is also designed sensing temperature and pressure. Furthermore, a fast detection system is developed to realize high-speed signal acquisition. At last, experiments are executed and the SAW temperature and pressure sensor property is measured. The results show that the designed SAW sensor can realize real-time monitoring of tire condition; the temperature measurement range can reach -40~120°C with an accuracy of ±1°C; the pressure measurement range can reach 0~2MPa with an
Tian, YahuiLi, FanZhang, ZeqinLu, ZixiaoXu, Nan
Vehicles equipped with Level 4 and 5 autonomy will need to be tested according to regulatory standards (or future revisions thereof) that vehicles with lower levels of autonomy are currently subject to. Today, dynamic Federal Motor Vehicle Safety Standards (FMVSS) tests are performed with human drivers and driving robots controlling the test vehicle’s steering wheel, throttle pedal, and brake pedal. However, many Level 4 and 5 vehicles will lack these traditional driver controls, so it will be impossible to control these vehicles using human drivers or traditional driving robots. Therefore, there is a need for an electronic interface that will allow engineers to send dynamic steering, speed, and brake commands to a vehicle. This paper describes the design and implementation of a market-ready Automated Driving Systems (ADS) Test Data Interface (TDI), a secure electronic control interface which aims to solve the challenges outlined above. The interface consists of a communication port
Zagorski, ScottNguyen, AnHeydinger, GaryAbbey, Howard
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data. In addition to importing measured test signals into the Autonomie environment, the process
Kim, NamdooIslam, Ehsan SabriVijayagopal, RamPamminger, Michael
The new generation vehicles these days are managed by networked controllers. A large portion of the networks is planned with more security which has recently roused researchers to exhibit various attacks against the system. This paper talks about the liabilities of the Controller Area Network (CAN) inside In-vehicle communication protocol and a few potentials that could take due advantage of it. Moreover, this paper presents a few security measures proposed in the present examination status to defeat the attacks. In any case, the fundamental objective of this paper is to feature a comprehensive methodology known as Intrusion Detection System (IDS), which has been a significant device in getting network data in systems over many years. To the best of our insight, there is no recorded writing on a through outline of IDS execution explicitly in the CAN transport network system. Therefore, we proposed a top-down examination of IDS through a write-up based on the following perspectives
Appajosyula, Kalyan Sai Vital VamsiPacharla, Sreedhar Reddy
Vehicular odometers serve as a standard component in driver assistance system to provide continuous navigation. Odometer fraud is the disconnection, resetting, or alteration of a vehicle’s odometer with the intent to change the number of miles indicated. Odometer fraud occurs when the seller of a vehicle falsely represents the actual mileage of a vehicle to the buyer. But the Odometer readings are essential when it comes to ascertaining the fair market value of a used vehicle. Hence, there is a need to protect the odometer which resides in the instrument cluster of the digital cockpit. Any manipulation is very difficult to detect and to prove once made, even by expert technicians using specific On-Board Diagnostics (OBD) testing devices. One of the most critical issues is that currently odometers are not locked out from external access, in contrast to other vehicle components, which have higher protection levels. As a result, odometers are not sufficiently cyber-secured and there is a
Ansari, AsadullahP.C., KarthikD H, SharathDevarasu, Dhanasekaran
The LEV IV FTP PM limit in the recently approved CARB ACC II regulations for passenger cars and light duty trucks will be 1 mg/mile starting in 2025. Gravimetric PM measurement at these levels is very challenging as the net mass of PM on the filter in full flow tunnel testing ranges between 8 to 32 micrograms depending on amount of dilution. This is approaching tunnel background levels which, in combination with filter handling, static charge removal and microbalance instability, compounds the uncertainty. One major source of the uncertainty at these low levels is the tunnel contamination resulting in high variability from test to test and cell to cell. This tunnel background is mostly HC artifact which cannot be easily controlled and can be significantly higher than the 5-μg CFR allowable correction limit in some test cells. Items that might affect the PM background include the type of testing being run on the tunnel prior to measuring the background such as OBD, cold and diesel
Yassine, Mahmoud K.
The automotive industry changes rapidly. New players, concepts, and technologies from the Information Technology (IT) domain enter the market and software receives a high priority. Inside the vehicle, the number of components, which consist mostly of software, are increasing and more and more software-based functions are offered. In addition, High Performance Computers (HPCs) are continuing to be integrated into vehicles. These aspects lead to several challenges with current vehicle diagnostics, but also enable new opportunities in that field. However, in the specific area of vehicle diagnostics, there exists only very limited literature that considers current challenges and new possibilities for future vehicle diagnostics. Some literature deals with the general automotive system design or shows results from about five years ago. The viewpoints of an Original Equipment Manufacturer (OEM) are not included there. This paper presents results from an expert survey in order to identify what
Bickelhaupt, SandraHahn, MichaelNuding, NikolaiMorozov, AndreyWeyrich, Michael
The Real Driving Emissions (RDE) test method has been introduced after 2017 to regulate the vehicle emissions in real-world driving situations by means of on-board emissions measurements. This paper aims to estimate the detailed on-board gaseous emissions from a light-duty direct-injection gasoline vehicle simultaneously using both portable emissions measurement system (PEMS) and sensor-based emissions measurement system (SEMS). Test route is typical urban route and tests environment factors followed the RDE regulation. Carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and ammonia (NH3) emissions were analyzed according to cold start once and followed by hot start conditions. The mass emissions of gas components were calculated based on the exhaust flowrate obtained from OBD parameters, NH3 emission was calculated based on NO sensor’s data. Two drivers participated in the tests and their emissions difference has been compared. The results indicating cold start caused
Chen, JiaxinSato, SusumuEang, ChanpayaTanaka, KotaroTange, Takeshi
Due to increase in complexity of vehicle functionality and involvement of electronic components, the use of complex electronic control units is prevalent in today’s vehicles. This has led to increased amount of Electronic Control Unit (ECU) data, and in turn increased Diagnostic data. This Diagnostic data is described in the Automotive Open System Architecture Diagnostic Exchange Template (AUTOSAR DEXT), which is a standard diagnostic data format specified in AUTOSAR 4.2.1 for Unified Diagnostic Services and fault memory. It enables consistent exchange of Diagnostic information across Original Equipment manufacturer OEMs and between OEM and Suppliers, thereby aiding uniformity in configuration of basic software modules described in Automotive Open System Architecture (AUTOSAR) Layered Architecture across enterprise boundaries. DEXT provides the possibility to describe the data to be transported, using respective protocol, along with origin of data in ECU’s application software. When
Kadu, VedantiDambhare, SanjayUjjir, AbhinavYadav, Vineet
Several commercial truck OEMs revealed new medium-duty EVs at NTEA's 2023 Work Truck Week (WTW) in Indianapolis, Indiana. Interest in Class 5, 6 and 7 EVs has ramped up rapidly in recent years, and many OEMs are rolling out new models to meet the increased demand.
Wolfe, MattGehm, Ryan
Items per page:
1 – 50 of 847