Browse Topic: Navigation and guidance systems
This paper presents the development of a cost-effective assistive headgear designed to address the navigation challenges faced by millions of visually impaired individuals in India. Existing solutions are often prohibitively expensive, leaving a significant portion of this population underserved. To address this gap, we propose a novel human-machine interface that utilizes a synergistic combination of computer vision, stereo imaging, and haptic feedback technologies. The focus of this project lies in the creation of a practical and affordable headgear that empowers visually impaired users with real time obstacle detection and navigation capabilities. The solution leverages computer vision for environmental analysis and integrates haptic feedback for intuitive user guidance. This paper details the design intricacies of the headgear, along with the implementation methodologies employed. We present comprehensive testing results and discuss the project's potential to significantly enhance
LIDAR-based autonomous mobile robots (AMRs) are gradually being used for gas detection in industries. They detect tiny changes in the composition of the environment in indoor areas that is too risky for humans, making it ideal for the detection of gases. This current work focusses on the basic aspect of gas detection and avoiding unwanted accidents in industrial sectors by using an AMR with LIDAR sensor capable of autonomous navigation and MQ2 a gas detection sensor for identifying the leakages including toxic and explosive gases, and can alert the necessary personnel in real-time by using simultaneous localization and mapping (SLAM) algorithm and gas distribution mapping (GDM). GDM in accordance with SLAM algorithm directs the robot towards the leakage point immediately thereby avoiding accidents. Raspberry Pi 4 is used for efficient data processing and hardware part accomplished with PGM45775 DC motor for movements with 2D LIDAR allowing 360° mapping. The adoption of LIDAR-based AMRs
There are certain situations when landing an Advanced Air Mobility (AAM) aircraft is required to be performed without assistance from GPS data. For example, AAM aircraft flying in an urban environment with tall buildings and narrow canyons may affect the ability of the AAM aircraft to effectively use GPS to access a landing area. Incorporating a vision-based navigation method, NASA Ames has developed a novel Alternative Position, Navigation, and Timing (APNT) solution for AAM aircraft in environments where GPS is not available.
Southwest Research Institute has developed off-road autonomous driving tools with a focus on stealth for the military and agility for space and agriculture clients. The vision-based system pairs stereo cameras with novel algorithms, eliminating the need for LiDAR and active sensors.
A new scientific technique could significantly improve the reference frames that millions of people rely upon each day when using GPS navigation services, according to a recently published article in Radio Science.
Radio frequency (RF) and microwave signals are integral carriers of information for technology that enriches our everyday life – cellular communication, automotive radar sensors, and GPS navigation, among others. At the heart of each system is a single-frequency RF or microwave source, the stability and spectral purity of which is critical. While these sources are designed to generate a signal at a precise frequency, in practice the exact frequency is blurred by phase noise, arising from component imperfections and environmental sensitivity, that compromises ultimate system-level performance.
In the early 2010s, LightSquared, a multibillion-dollar startup promising to revolutionize cellular communications, declared bankruptcy. The company couldn't figure out how to prevent its signals from interfering with those of GPS systems. Now, Penn Engineers have developed a new tool that could prevent such problems from ever happening again: an adjustable filter that can successfully prevent interference, even in higher-frequency bands of the electromagnetic spectrum.
In the early 2010s, LightSquared, a multibillion-dollar startup promising to revolutionize cellular communications, declared bankruptcy. The company couldn’t figure out how to prevent its signals from interfering with those of GPS systems.
A new algorithm reduces travel time by identifying shortcuts a robot could take on the way to its destination. Massachusetts Institute of Technology, Cambridge, Massachusetts If a robot traveling to a destination has just two possible paths, it needs only to compare the routes' travel time and probability of success. But if the robot is traversing a complex environment with many possible paths, choosing the best route amid so much uncertainty can quickly become an intractable problem. MIT researchers developed a method that could help this robot efficiently reason about the best routes to its destination. They created an algorithm for constructing roadmaps of an uncertain environment that balances the tradeoff between roadmap quality and computational efficiency, enabling the robot to quickly find a traversable route that minimizes travel time.
Game-like navigation visuals Conversational-style voice commands. Contactless biometric sensing. A tidal wave of software code and sensing technologies are being prepped to alter in-vehicle activities. Two supplier companies, TomTom and Mitsubishi Electric Automotive America (MEAA), recently presented their concept cockpit demonstrators to media at TomTom's North American corporate offices in Farmington Hills, Michigan. A few highlights:
This study presents the constructed electromechanical model and the analysis of the obtained nonlinear systems. An algorithm for compensating the nonlinear drift of a gyroscope in a microelectromechanical system is proposed. Tests were carried out on a precision rotating base, with the angular velocity changing as per the program. Bench testing the gyroscope confirmed the results, which were also supported by the parameter calibration. The analytical method was further validated through experimental results, and a correction algorithm for the mathematical model was developed based on the test results. After calibration and adjusting the gyroscope’s systematic flaws, the disparity in calculating the precession angle was within 1/100th of an angular second over an interval of approximately 1000 s. Currently, research is underway on the new nonlinear dynamic characteristics of electrostatically controlled microstructures. The results of the integrated navigation system of small satellites
One of the main challenges of autonomous driving is to integrate different modules, such as perception, planning, control, and communication, that work together to enable the vehicle to drive safely and efficiently. A key module of autonomous driving is the vehicle localization system, which estimates the vehicle's position in the environment, and provides guidance for the optimal route. The vehicle localization system is essential for ensuring the safety of autonomous driving. This paper proposes a vehicle localization method based on visual simultaneous localization and mapping (SLAM) using a monocular camera. The method captures images of the environment with a monocular camera and extracts ORB (Oriented FAST and rotated BRIEF) features from them. It then tracks the features across the images and constructs a sparse map of the scene. The map is used to estimate the vehicle's pose, which is the position and orientation of the vehicle, in local coordinates. The pose is then rescaled
Vehicle navigation in off-road environments is challenging due to terrain uncertainty. Various approaches that account for factors such as terrain trafficability, vehicle dynamics, and energy utilization have been investigated. However, these are not sufficient to ensure safe navigation of optionally manned ground vehicles that are prone to detection using thermal infrared (IR) seekers in combat missions. This work is directed towards the development of a vehicle IR signature aware navigation stack comprised of global and local planner modules to realize safe navigation for optionally manned ground vehicles. The global planner used A* search heuristics designed to find the optimal path that minimizes the vehicle thermal signature metric on the map of terrain’s apparent temperature. The local planner used a model-predictive control (MPC) algorithm to achieve integrated motion planning and control of the vehicle to follow the path waypoints provided by the global planner. Vehicle
Items per page:
50
1 – 50 of 1088