Browse Topic: Fiber optics
This document establishes training guidelines applicable to fiber optics engineer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Trainers/Instructors Third Party Maintenance Agencies Production
This document provides user information on best practice methods and processes for the in-service inspection, evaluation, and cleaning of expanded beam (EB) fiber optic interconnect components (termini, alignment sleeves, and connectors), test equipment, and test leads based on the information provided in AIR6031 and ARP6283. This document provides the user with a decision-making tool to determine if the fiber optic components are acceptable for operation with EB fiber optic termini.
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
This document establishes re-certification guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This paper presents the development of an alternative to the traditional multichannel Fiber Optic Rotary Joint (FORJ) using spatial division multiplexing. The proposed solution utilizes phase plates assembly in a compact housing made by a French optical communications company called Cailabs. It is distinguished from conventional multichannel technologies that rely on Dove prisms or wavelength multiplexing by using the housing of a single channel Fiber Optic Rotary Joint (FORJ) without needing strong constraint on the choice of optical transceivers. Our research focused on characterizing the specific mechanical parameters required to transfer optical modes from the rotor to the stator without deformation or misalignment of those. Three test campaigns were conducted, each with iterative improvements. The latest results demonstrate commercially viable performance for transmission of 3G-SDI video stream on up to 6 channels.
As fast as modern electronics have become, they could be much faster if their operations were based on light, rather than electricity. Fiber optic cables already transport information at the speed of light, but to do computations on that information without translating it back to electric signals will require a host of new optical components.
State-of-the-art fighter aircraft have a large number of support systems that operate in multiple areas. These systems are continuously optimized to achieve maximum efficiency and performance. Countless sensors monitor the environment and generate important data that helps to understand the areas overflown. But even in life-threatening combat situations, target acquisition systems support pilots and provide additional information that can be decisive with the help of augmented reality (AR) and artificial intelligence (AI). Military aviation is an arena with great potential for the use of technical aids that have transformed the original fighter aircraft into a technological masterpiece. In addition to the high level of complexity, the upcoming generation change from fifth- to sixth-generation fighter jets poses major challenges for component suppliers and accelerates the pace of technological competition. A military fighter jet is already an extremely demanding environment for
State-of-the-art fighter aircraft have a large number of support systems that operate in multiple areas. These systems are continuously optimized to achieve maximum efficiency and performance. Countless sensors monitor the environment and generate important data that helps to understand the areas overflown. But even in life-threatening combat situations, target acquisition systems support pilots and provide additional information that can be decisive with the help of augmented reality (AR) and artificial intelligence (AI). Military aviation is an arena with great potential for the use of technical aids that have transformed the original fighter aircraft into a technological masterpiece.
Imagine you had a dedicated wireless channel for communication that was hundreds of times faster than the Wi-Fi we use today, with hundreds of times more bandwidth. That dream may not be far off thanks to the development of metasurfaces: tiny engineered sheets that can reflect and otherwise direct light in desired ways.
A new feature of the modern high-powered laser is the need to transmit various wavelengths through fiber optics. Fiber optics have emerged as the primary method for transmitting laser light due to its ease of setup and disconnection. Moreover, it safeguards end users from light exposure or eye contact, as the light is conveyed through an enclosed conduit.
Researchers have designed a six-hole micro-structure antiresonant air-core fiber (AR-HCF) with a large core diameter of 78 μm. The researchers say it is the first time that 2.79 μm high energy pulsed laser has been transmitted with good efficiency at room temperature.
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments.
This document defines a quantified means of specifying a digital fiber optic link loss budget: Between end users and system integrators Between system integrators and subsystem suppliers Between subsystem suppliers and component vendors The standard specifies methods and the margin required for categories of links.
This document defines the steps and documentation required to perform a digital fiber optic link loss budget. This document does not specify how to design a digital fiber optic link. This document does not specify the parameters and data to use in a digital fiber optic link loss budget.
Air Force Test Pilot School Edwards Air Force Base, CA 661-277-1110
Researchers introduce a fiber-optic computing architecture based on temporal multiplexing and distributed feedback that performs multiple convolutions on the input data in a single layer. Naval Research Laboratory, Washington, D.C. U.S. Naval Research Laboratory (NRL) researchers have outlined a novel contribution in fiber optics computing in a paper recently published in Communications Physics Journal that brings the Navy one step closer to faster, more efficient computing technologies. Optical computing uses the properties of light, such as its speed and ability to carry large amounts of data, to process information more efficiently than traditional electronic computers.
U.S. Naval Research Laboratory (NRL) researchers have outlined a novel contribution in fiber optics computing in a paper recently published in Communications Physics Journal that brings the Navy one step closer to faster, more efficient computing technologies.
Optical parametric oscillator (OPO) lasers test optical fibers and components to characterize the spectral response of optical components. OPO lasers are common in sophisticated test and measurement applications such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these tunable pulsed lasers are being used to facilitate a range of tests at different wavelengths to qualify and quantify the performance of optical components such as fiber optic strands, filters, lenses, and coated mirrors.
OPO lasers test optical fibers and components to characterize the spectral response of optical components, which can provide a competitive advantage in the optics industry.
For wealthy countries like Switzerland, having a dense network of earthquake monitoring stations is a matter of course. This is not the case in less developed countries and on the floor of the world’s oceans. While poorer regions lack the money for the necessary number of sensors, the oceans require complex systems that can reliably measure minimal pressure changes at depths of thousands of meters and bring the data signals to the surface.
Patterns of light hold tremendous promise for a large encoding alphabet in optical communications but progress is hindered by their susceptibility to distortion, such as in atmospheric turbulence or in bent optical fiber. Researchers at the University of the Witwatersrand (Wits) have outlined a new optical communication protocol that exploits spatial patterns of light for multi-dimensional encoding in a manner that does not require the patterns to be recognized, thus overcoming the prior limitation of modal distortion in noisy channels.
Items per page:
50
1 – 50 of 933