Browse Topic: Fiber optics
State-of-the-art fighter aircraft have a large number of support systems that operate in multiple areas. These systems are continuously optimized to achieve maximum efficiency and performance. Countless sensors monitor the environment and generate important data that helps to understand the areas overflown. But even in life-threatening combat situations, target acquisition systems support pilots and provide additional information that can be decisive with the help of augmented reality (AR) and artificial intelligence (AI). Military aviation is an arena with great potential for the use of technical aids that have transformed the original fighter aircraft into a technological masterpiece. In addition to the high level of complexity, the upcoming generation change from fifth- to sixth-generation fighter jets poses major challenges for component suppliers and accelerates the pace of technological competition. A military fighter jet is already an extremely demanding environment for
Imagine you had a dedicated wireless channel for communication that was hundreds of times faster than the Wi-Fi we use today, with hundreds of times more bandwidth. That dream may not be far off thanks to the development of metasurfaces: tiny engineered sheets that can reflect and otherwise direct light in desired ways.
Researchers have designed a six-hole micro-structure antiresonant air-core fiber (AR-HCF) with a large core diameter of 78 μm. The researchers say it is the first time that 2.79 μm high energy pulsed laser has been transmitted with good efficiency at room temperature.
A new feature of the modern high-powered laser is the need to transmit various wavelengths through fiber optics. Fiber optics have emerged as the primary method for transmitting laser light due to its ease of setup and disconnection. Moreover, it safeguards end users from light exposure or eye contact, as the light is conveyed through an enclosed conduit.
This document defines a quantified means of specifying a digital fiber optic link loss budget: Between end users and system integrators Between system integrators and subsystem suppliers Between subsystem suppliers and component vendors The standard specifies methods and the margin required for categories of links.
This document defines performance standards which fiber optic cable splices must meet to be accepted for use in aerospace platforms and environments.
This document defines the steps and documentation required to perform a digital fiber optic link loss budget. This document does not specify how to design a digital fiber optic link. This document does not specify the parameters and data to use in a digital fiber optic link loss budget.
Air Force Test Pilot School Edwards Air Force Base, CA 661-277-1110
Researchers introduce a fiber-optic computing architecture based on temporal multiplexing and distributed feedback that performs multiple convolutions on the input data in a single layer. Naval Research Laboratory, Washington, D.C. U.S. Naval Research Laboratory (NRL) researchers have outlined a novel contribution in fiber optics computing in a paper recently published in Communications Physics Journal that brings the Navy one step closer to faster, more efficient computing technologies. Optical computing uses the properties of light, such as its speed and ability to carry large amounts of data, to process information more efficiently than traditional electronic computers.
U.S. Naval Research Laboratory (NRL) researchers have outlined a novel contribution in fiber optics computing in a paper recently published in Communications Physics Journal that brings the Navy one step closer to faster, more efficient computing technologies.
Optical parametric oscillator (OPO) lasers test optical fibers and components to characterize the spectral response of optical components. OPO lasers are common in sophisticated test and measurement applications such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these tunable pulsed lasers are being used to facilitate a range of tests at different wavelengths to qualify and quantify the performance of optical components such as fiber optic strands, filters, lenses, and coated mirrors.
OPO lasers test optical fibers and components to characterize the spectral response of optical components, which can provide a competitive advantage in the optics industry.
For wealthy countries like Switzerland, having a dense network of earthquake monitoring stations is a matter of course. This is not the case in less developed countries and on the floor of the world’s oceans. While poorer regions lack the money for the necessary number of sensors, the oceans require complex systems that can reliably measure minimal pressure changes at depths of thousands of meters and bring the data signals to the surface.
Patterns of light hold tremendous promise for a large encoding alphabet in optical communications but progress is hindered by their susceptibility to distortion, such as in atmospheric turbulence or in bent optical fiber. Researchers at the University of the Witwatersrand (Wits) have outlined a new optical communication protocol that exploits spatial patterns of light for multi-dimensional encoding in a manner that does not require the patterns to be recognized, thus overcoming the prior limitation of modal distortion in noisy channels.
Exploring the possibility of all-weather secure quantum communication using macroscopic quantum states of light. Air Force Research Laboratory, Asian Office of Aerospace Research and Development, Tokyo, Japan More than half a century has passed since the birth of quantum signal detection theory, which is the cornerstone of modern quantum communication theory. Quantum stream cipher, the quantum-noise-based direct encryption scheme for optical communications at the center of our research, is based on the foundations of quantum communication theory. For quantum cryptography to progress from a theoretical possibility to a more realistic technology, experimental and theoretical research must be complementary. We have reported several experimental and theoretical studies on the quantum stream cipher connecting two points via optical fibers and also fabricated a prototype based on them. To enhance the usability of a quantum stream cipher, free-space optical communications must be explored in
The data centers and high-performance computers that run artificial intelligence programs, such as large language models, aren’t limited by the computational power of their individual nodes. It’s another problem — the amount of data they can transfer among the nodes — that underlies the “bandwidth bottleneck” that currently limits the performance and scaling of these systems.
AS95234 includes reverse bayonet coupling, high current electrical connectors that are watertight and principally used in shipboard, ground vehicles and ground support equipment applications at serve voltages from 200 to 3000 Vrms and temperatures between -55 °C and +125 °C (-67 °F and +257 °F). See 6.1.5 for applications details. For aerospace application connectors, refer to AS50881.
This specification covers the requirements for flexible shielded electrical conduit for aircraft installations.
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document. SAE J3105: Main document, including most requirements. ○ SAE J3105/1: Infrastructure-Mounted Cross Rail Connection ○ SAE J3105/2: Vehicle-Mounted
Items per page:
50
1 – 50 of 930