Browse Topic: Switches
The driving capability and charging performance of electric vehicles (EVs) are continuously improving, with high-performance EVs increasing the voltage platform from below 500V to 800V or even 900V. To accommodate existing low-voltage public charging stations, vehicles with high-voltage platforms typically incorporate boost chargers. However, these boost chargers incur additional costs, weight, and spatial requirements. Most mature solutions add a DC-DC boost converter, which results in lower charging power and higher costs. Some new methods leverage the power switching devices and motor inductance within the electric drive motor to form a boost circuit using a three-phase current in-phase control strategy for charging. This approach requires an external inductor to reduce charging current ripple. Another method avoids the use of an external inductor by employing a two-parallel-one-series topology to minimize current ripple; however, this reduces charging power and increases the risk
This SAE Recommended Practice establishes for trucks, buses, and multipurpose passenger vehicles with GVW of 4500 kg (10 000 lb) or greater: a Minimum performance requirements for the switch for activating electric or electro-pneumatic windshield washer systems. b Uniform test procedures that include those tests that can be conducted on uniform test equipment by commercially available laboratory facilities. The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield washing system performance is developed.
This SAE Recommended Practice establishes for trucks, buses, and multipurpose vehicles with GVW of 4500 kg (10 000 lb) or greater: a Minimum performance requirements for the switch for electrically or electro-pneumatically powered windshield wiping systems. b Uniform test procedures that include those tests that can be conducted on uniform test equipment by commercially available laboratory facilities. The test procedures and minimum performance requirements, outlined in this document are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Lasers developed at the University of Rochester offer a new path for on-chip frequency comb generators. University of Rochester, Rochester, NY Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics. In a study published in Nature Communications, researchers at the University of Rochester describe new microcomb lasers they have developed that overcome previous limitations and feature a simple design that could open the door to a broad range of uses.
Electrification isn't just a matter of switching out the diesel engine for an electric motor. It requires a thorough review of connected systems - particularly the hydraulic system. Using the same components in electric machines as those used in conventional machines often requires more battery power or a larger electric motor. For this reason, OEMs have discovered the need to rethink efficiency and productivity when electrifying machines. MPG Makine Prodüksiyon Grubu learned this firsthand when designing a truck-mounted electric crane for one of its Netherlands-based customers. The Konya, Turkey-based OEM produces truck-mounted hydraulic cranes with folding and telescopic booms as well as aerial work platforms and tree trans-planter machines.
Reliable and safe Redundant Steering System (RSS) equipped with Dual-Winding Permanent Magnet Synchronous Motor (DW-PMSM) is considered an ideal actuator for future autonomous vehicle chassis. The built-in DW-PMSM of the RSS is required to identify various winding’s faults such as disconnection, open circuit, and grounding. When achieving redundant control through winding switching, it is necessary to suppress speed fluctuations during the process of winding switching to ensure angle control precision. In this paper, a steering angle safety control for RSS considering motor winding’s faults is proposed. First, we analyze working principle of RSS. Corresponding steering system model and fault model of DW-PMSM have been established. Next, we design the fault diagnosis and fault tolerance strategy of RSS. Considering the difference in amplitude frequency characteristics of phase current during DW-PMSM winding faults, the Hanning window and Short-Time Fourier Transform (STFT) is
The bi-stable phenomena of the Ahmed model were experimentally studied at different rear slant angles (31.8 °, 42 °, 50 °, 60 °, 75 °, 90°) and different Reynolds numbers (9.2 × 104, 1.84 × 105, 2.76 × 105). The analysis of pressure gradients both on the base and slant indicate that no bi-stable phenomena were observed at different Reynolds numbers when the slant angle was less than or equal to 50°. However, for the rear slant angles greater than or equal to 60°, the pressure gradients consistently shift between two preferred values at various Reynolds numbers, indicating the presence of bi-stable behavior in the spanwise direction. Therefore, the critical angle for the appearance of bi-stability in the Ahmed model lies within the range of 50° to 60°, and the existence of bistable behavior remains unaffected by the Reynolds number. As the slant angle increases, the switching rate decreases significantly until the angle is greater than 60°. Furthermore, with an increase in Reynolds
Researchers have developed a fluid switch using ionic polymer artificial muscles that operates at ultra-low power and produces a force 34 times greater than its weight. Fluid switches control fluid flow, causing the fluid to flow in a specific direction to invoke various movements.
Photoelectric (PE) sensors represent a discrete sensor technology widely used throughout industry. Also called photoelectric switches or photoeyes, they use the presence or absence of light to provide an on/off output to supervisory automation and monitoring systems (Figure 1). Although the technology has been in use for many years, there are many device configurations and some recent advancements worthy of note.
This document examines the most important considerations relative to the use of proximity sensing systems for applications on aircraft landing gear. In general, the information included are applicable to other demanding aircraft sensor installations where the environment is equally severe.
Manufacturers of automation components have long made pneumatic valve terminals with IP65 and IP67 ratings that can be mounted anywhere on a machine. This is particularly useful for connecting valves as close to pneumatic actuators as possible. Doing so shortens the length of tubing, reduces the occurrence and severity of leaks, and increases actuator performance by shortening cycle times. Decentralized valve terminals communicate with the machine controller or PLC via an industrial Ethernet network. In addition to valves, terminals are configured with input and output modules to allow for easy connection of sensors, switches, and other field-level devices to the industrial network.
Worldwide awareness surrounding the need for hygiene was escalated to the extreme by COVID-19. Now that the pandemic’s beginning is a few years in the past, designers and OEMs for machinery and other user-facing equipment are investigating ways to provide an adequate user interface, while minimizing the need for people to touch the controls.
Crew Station design in the physical realm is complex and expensive due to the cost of fabrication and the time required to reconfigure necessary hardware to conduct studies for human factors and optimization of space claim. However, recent advances in Virtual Reality (VR) and hand tracking technologies have enabled a paradigm shift to the process. The Ground Vehicle System Center has developed an innovative approach using VR technologies to enable a trade space exploration capability which provides crews the ability to place touchscreens and switch panels as desired, then lock them into place to perform a fully recorded simulation of operating the vehicle through a virtual terrain, maneuvering through firing points and engaging moving and static targets during virtual night and day missions with simulated sensor effects for infrared and night vision. Human factors are explored and studied using hand tracking which enables operators to check reach by interacting with virtual components
Rice University’s Boris Yakobson and collaborators uncovered a property of ferroelectric 2D materials that could be exploited as a feature in future devices. Because they bend in response to an electrical stimulus, single-layer ferroelectric materials can be controlled to act as a nanoscale switch or even a motor, research published in ACS Nano shows.
Imagine a home computer operating one million times faster than the most expensive hardware on the market. Now, imagine that level of computing power as the industry standard.
Electrical switches of all types activate circuits, send information, and initiate actions. An inertial switch is one that is triggered to activate at a specific acceleration threshold. No power is consumed until the switch is ‘awakened’ by the relevant event, making it ideal for ultra-low power (ULP) and remote applications.
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory. And the MOEA/D algorithm was used to
Items per page:
50
1 – 50 of 1134