Browse Topic: Battery packs

Items (1,090)
A great number of performances of an electric vehicle such as driving range, powering performance, and the like are affected by its configured batteries. Having a good grasp of the electrical and thermal behavior of the battery before the detailed design stage is indispensable. This paper introduces an experiment characterization method of a lithium-ion battery with a coolant system from cell level to pack level in different ambient conditions. Corresponding cell and pack simulation models established in AMESim that aimed to capture the electrical and thermal features of the battery were also illustrated, respectively. First, the capacity test and hybrid pulse power characterization (HPPC) test were conducted in a thermotank to acquire basic data about the battery cell. Next, based on acquired data, first-order equivalent circuit model (1C-ECM) was built for the battery cell and further combined with environmental boundary conditions to check the simulation accuracy. Then, hybrid
Zhou, ShuaiLiu, HuaijuYu, HuiliYan, XuYan, Junjie
The New Car Assessment Program (e.g., US NCAP and EuroNCAP) frontal crash tests are an essential part of vehicle safety evaluations, which are mandatory for the certification of civil means of transport prior to normal road exploitation. The presented research is focused on the behavior of a tubular low-entry bus frame during a frontal impact test at speeds of 32 and 56 km/h, perpendicular to a rigid wall surface. The deformation zones in the bus front and roof parts were estimated using Ansys LS-DYNA and considered such factors as the additional mass (1630 kg) of electric batteries following the replacement of a diesel engine with an electric one. This caused stabilization of the electric bus body along the transverse axis, with deviations decreased by 19.9%. Speed drop from 56 to 32 km/h showed a reduction of the front window sill deformations from 172 to 132 mm, and provided a twofold margin (159.4 m/s2) according to the 30g ThAC criterion of R80. This leads to the conclusion about
Holenko, KostyantynDykha, AleksandrKoda, EugeniuszKernytskyy, IvanRoyko, YuriyHorbay, OrestBerezovetska, OksanaRys, VasylHumeniuk, RuslanBerezovetskyi, SerhiiChalecki, Marek
Toyota Motor Corporation pursuing an omnidirectional strategy that includes battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and fuel cell electric vehicle (FCEV) to accelerate electrification. One of the technical challenges with our xEV batteries which feature good degradation resistance and long battery life, is that regenerative braking cannot be fully effective due to the decrease in regenerative power in some situations, such as low battery temperature. For the electrified vehicles with an internal combustion engine such as PHEVs, the solution has been running the engine to increase deceleration through engine braking during coasting. PHEVs are expected to extend their cruising range and enhance EV driving experience as "Practical BEVs". While increasing battery capacity and enhancing convenience, the restrictions on EV driving opportunity due to low battery temperature may negatively affect PHEV’s appealing. As an alternative, introducing a battery heater
Hoshino, Yu
Electric vehicles (EVs) are gaining popularity due to their zero tailpipe emissions, superior energy efficiency, and sustainable nature. EVs have various limitations, and crucial one is the occurrence of thermal runaway in the battery pack. During charging or discharging condition of battery pack may result in thermal runaway condition. This promotes the requirement of effective cooling arrangement in and around the battery pack to avoid localized peak temperature. In the present work, thermal management of a 26650 Lithium iron phosphate (LFP) cell using natural convection air cooling, composite biobased phase change material (CBPCM) and its combination with copper fins is numerically investigated using multi-scale multi dimension - Newman, Tiedenann, Gu and Kim (MSMD-NTGK) battery model in Ansys Fluent at an ambient temperature of 306 K. Natural convection air cooling was found effective at discharge rates of 1C to 3C, maintaining cell temperature below the safe limit of 318 K for 80
Srivastav, DurgeshPatil, Nagesh DevidasShukla, Pravesh Chandra
In recent years, energy scarcity and environmental pollution have intensified globally, prompting increased research and development in new energy vehicles as countries prioritize environmental protection and energy conservation. Compared to fuel-powered vehicles, new energy vehicles have relatively larger battery volumes and weights, which can increase damage and the risk of fires and explosions in collisions. To analyze and optimize the safety performance of a specific vehicle model's battery pack, we constructed a finite element model using existing software and performed pre-processing, simulation, and analysis of modal, random vibration, and extrusion characteristics. This revealed specific damage scenarios and enabled reliability analysis under working conditions. To enhance safety and reduce mass, we parametrically modeled power pack components and optimized parameters via multi-objective genetic algorithms under three road conditions. Results indicate reduced mass and improved
Wang, Zhi
In the automotive industry, it is essential to consider not only how well specialty materials perform and are formulated, but also how efficiently and economically they can be applied during manufacturing. This becomes especially important during the early stages of development to prevent issues when these materials are used in new designs by automotive suppliers or manufacturers. With the rapid growth of electric vehicles (EVs), new materials are being used more frequently, and these materials may not have been as thoroughly tested as those used in traditional internal combustion engine (ICE) vehicles. Therefore, it is crucial to ensure that these materials can be applied correctly and efficiently from the start. One way to speed up the development process is through Computational Fluid Dynamics (CFD) modeling. CFD helps predict how materials will behave when dispensed, which is essential for developing the right equipment and conditions for applying these materials. Working with
Kenney, J. AndyDelgado, RobertoHossain, ArifNg, Sze-SzeThomas, RyanChyasnavichyus, MariusTsang, Chi-WeiHwang, MargaretWu, LanceDietsche, LauraMcmichael, JonathanRaines, KevinNelson, Grant
The number of electric vehicles (EVs) has significantly increased in recent years. Safety performance of EVs is at least at the same level as that of conventional vehicles. To evaluate battery safety and ensure passenger protection, several standard tests and regulations for EV batteries have been established, including IEC 62660-3, ISO 6469-1, and UN/ECE/R100 Revision 3. ISO 6469-1:2019/Amd 1 specifies thermal propagation (TP) test to evaluate battery robustness against thermal runaway (TR) in a single cell. Moreover, UN/ECE/R100 Revision 3 aims to provide sufficient egress time to protect passengers in the event of a TR in a single cell. Typically, these tests initiate TR in a cell within a battery pack using either a heater or nail. In the heater method, if the gap between cells is larger than the heater’s thickness and there are no installation constraints due to components, almost any cell can be chosen as the initiating cell. However, if the gap between cells is smaller than the
Maeda, KiyotakaTakahashi, Masashi
The use of lithium-ion batteries in electric vehicles marks a major progression in the automotive sector. Energy storage systems extensively make use of these batteries. The extended life cycle, low self-discharge rates, high energy density, and eco-friendliness of lithium-ion batteries are well-known. However, Temperature sensitivity has an adverse effect on lithium-ion battery safety, durability, and performance. Thus, maintaining ideal operating conditions and reducing the chance of thermal runaway depend heavily on efficient thermal management. To address this, experimental study was conducted on various battery thermal management techniques, including active, passive, and hybrid approaches. These techniques were investigated for their cooling efficiencies under different operating conditions. The electro-thermal behavior of cylindrical lithium-ion battery cells, battery packs, and supervisory control techniques were simulated in the study using MATLAB Simulink, Simscape, and
Thangaraju, ShanmuganathanN, MeenakshiGanesan, Maragatham
Thermal runaway is a critical phenomenon in lithium batteries, characterized by a self-sustaining process due to internal chemical reactions, that is triggered once a certain temperature is reached within the cell. This event is often caused by overheating due to charge and discharge cycles and can lead to fires or explosions, posing a significant safety threat. The aim of this study is to induce thermal runaway on single cells in different ways to characterize the phenomenon and validate the simulation models present in Altair SimLab®. The work was conducted in several key phases. Initially, an experimental test was performed in a calorimeter (EV ARC HWS test) to collect temperature data of the Molicel 21700 P45B cell during thermal runaway under adiabatic conditions. These data were used for a simulation on a single cell, allowing a detailed comparison with the experimental results. Subsequently, a test was conducted on a single cell under operational conditions, overheated using a
Giuliano, LucaScrimieri, LuigiReitano, SimoneBerti Polato, DavideFerraris, AlessandroComerford, AndrewBhatnagar, Saakaar
A vital aspect of Ultra-Fast Charging (UFC) Li-Ion battery pack is its thermal management system, which impacts safety, performance, and cell longevity. Immersion cooling technology is more effective compared to indirect cold plate as heat can dissipate much quicker and has a potential to mitigate the thermal runaway propagation, improve pack overall performance, and cell life significantly. For design optimization and getting better insight, high fidelity Multiphysics-Multiscale simulations are required. Equivalent Circuit Model (ECM) based electro-thermally coupled multi-physics CFD simulations are performed to optimize the innovative busbar design, of a recently developed immersion cooled battery pack, which enables the capability to remove individual cell. Further, high fidelity 3D transient flow-thermal simulations have helped in optimizing the coolant flow direction, inlet positions, cell spacing and separator design for efficient flow distribution in the module. While high
Tyagi, RamavtarNegro, SergioBaranowski, AlexAtluri, Prasad
The rapid adoption of electric vehicles (EVs), driven by stricter emissions norms, is transforming both urban and rural mobility. However, significant challenges remain, particularly concerning the charging infrastructure and battery technology. The limited availability of charging stations and the reliance on current high-energy-density cells restrict the overall effectiveness of the e-mobility ecosystem. These constraints lead to shorter vehicle ranges and longer charging times, contributing to range anxiety—one of the most critical barriers to widespread EV adoption. Adding to these challenges, auxiliary systems, especially air-conditioning (AC) systems, significantly impact energy consumption. Among all auxiliary systems, the AC system is the most energy-intensive, often exacerbating range anxiety by reducing the distance an EV can travel on a single charge. Hence, it is essential to focus on enhancing the efficiency of AC systems. This involves redefining and optimizing system
Sen, SomnathJadhav, YashSingh, KaramjeetSorte, SwapnilAnwar, Md Tahir
The shift towards hybrid and electric powertrains in off-road vehicles aims to enhance mobility, extend range, and improve energy efficiency. However, heat pump-based battery thermal management systems in these vehicles continue to consume significant energy, impacting overall range and efficiency. Effective thermal management is essential for maintaining battery performance and safety, particularly in extreme conditions. Although high-fidelity models can capture the complex dynamics of heat pumps, real-time control within model-based optimization frameworks often depends on simplified models, which can degrade system performance. To address this, we propose a novel data-driven grey box control-oriented model (COM) that accurately represents the thermal dynamics of a vapor-compression refrigeration-based heat pump system. This COM is integrated into a model-predictive control (MPC) framework, optimizing thermal management during transient and burst-power operations of the battery pack
Sundar, AnirudhGhate, AtharvaZhu, QilunPrucka, RobertRuan, YeefengFigueroa-Santos, MiriamBarron, Morgan
This study presents a detailed techno-economic assessment of battery-electric trucks, incorporating battery aging effects within a total cost of ownership (TCO) model. With increasingly stringent emissions regulations, battery-electric trucks are becoming a viable solution in Europe. However, due to uncertainty regarding their long-term cost-effectiveness and fleet operators’ profit-oriented priorities, there is an urgent need for accurate TCO assessment. Existing studies often overlook or oversimplify the impact of battery aging on overall costs. This work addresses this gap by introducing battery aging-related costs through an empirical battery degradation model, evaluated over the vehicle’s lifetime. Key aging costs include a refined estimation of battery residual value, influenced by degradation and remaining battery life, and potential battery replacement expenses. A case study on a VECTO group 9 truck used for regional delivery missions examines different payloads and battery
Costantino, TrentalessandroAcquarone, MatteoMiretti, FedericoSpessa, Ezio
The demand for eco-friendly electric powertrains has increased significantly in recent years. Cells are the most crucial component of a battery pack, directly influencing the dimensions, range, lifespan, performance, and cost of electric vehicles. Lithium-ion cells outperform other cell chemistries due to their higher energy density, allowing for more compact and lightweight designs while providing longer operational ranges. It is crucial that lithium-ion cell packaging complies with assembly requirements to maximize its lifespan and ensure operational safety. Assembly force requirements of lithium-ion cells are critical to ensure optimal cell performance throughout its lifetime & enhance the longevity of the battery pack. The compression pad between cells ensures appropriate cell assembly pressure. The service life is how long a lithium-ion cell can operate effectively, while the cyclic life refers to the number of charge-discharge cycles before cell functional degradation. The cell
Varambally, VishakhaSithick basha, AbubakkerChalumuru, MadhuSasikumar, K
Battery electric vehicles (BEVs) are well-suited for many passenger vehicle applications, but high cost, short range, and long recharging times have limited their growth in commercial vehicle markets. These constraints can be eliminated with plug-in hybrid electric vehicles (PHEVs) which combine many benefits of BEVs with those of conventional vehicles. In this study, research was conducted to determine the optimal hybrid electric powertrain system for a Class 3, light duty commercial vehicle. The key technologies used in this hybrid powertrain include engine downsizing, P3 architecture hybridization, and active thermal management of aftertreatment. A vehicle cost of ownership analysis was conducted to determine the economic viability, a very important consideration for commercial vehicles. Several combinations of E-motor and battery pack sizes were evaluated during the cost analysis and the best possible configuration was determined. The resulting vehicle powertrain demonstrated ~60
Meruva, PrathikMichlberger, AlexanderBachu, PruthviBitsis, Daniel Christopher
Light weighting has been one of the focus areas in automotive design, which has assumed greater importance for electric vehicles due to sensitivity of electric range to mass of the vehicle and increased cost of the battery packs to meet range target with increasing mass of vehicle. Mass of vehicle interior components have significant impact of overall vehicle mass due to cascading effect. Hence mass of such components must be minimized during design synthesis, where multiple design configurations may be explored with tradeoffs with regard to meeting functional requirements which are often conflicting. Assist handle bracket is one of such components in vehicle which needs to meet mandatory safety requirement of FMVSS 201U that requires the bracket to be soft. At the same time, the bracket needs to have adequate stiffness and strength to meet perceived quality and durability requirements. These are conflicting requirements which are often difficult to meet using manual design iterations
R, RajapandianKoppaka, Vinaya
A reemergence of manufacturer interest in range-extended electric vehicles is being driven by increasing diversification of consumer interest in low carbon-intensity technologies in the passenger vehicle and other markets. A major advantage of range-extended electric vehicles is that they curtail consumer vehicle range anxiety while maintaining a lower vehicle cost when compared with battery electric vehicles (BEV). By incorporating a small liquid-fueled internal combustion engine (ICE), the range and “refueling” time of electrified vehicles can be significantly improved while overcoming issues with cost and weight faced by long-range battery packs. Compared to ICEs designed for non-hybrid and mild hybrid vehicles, the ICE in a range-extended electric vehicle has a unique set of requirements focused on compact size, low cost, and efficient operation within a limited engine map. A Range Extender (REx) 0.9L 2-cylinder engine was selected which prioritizes these attributes in a
Peters, NathanMarion, JoshuaPothuraju Subramanyam, SaiHoth, AlexanderBunce, Mike
Designing for the durability of motor vehicles requires accounting for various stress factors, including tractive loads, electrical loads, thermal loads, and structural loads. For electric vehicle propulsion systems, it is crucial to consider not just the magnitude and repeats of these loads but also their temporal sequence throughout the vehicle’s lifespan. The order and timing of these loads influence factors such as, charge and discharge cycles or active motor heating, which ultimately impact the damage to the propulsion system components like the cell and the motor. Traditionally, lifetime loads for durability assessments are derived from a single-user load profile consisting of a set of ‘representative’ drive cycles accounting for the cumulative damage equivalent to the real-world damage covered under warranty. This profile is typically based on historical usage data, user scenarios, and industry experience, but may not capture the diverse failure modes of the different propulsion
Ramakrishnan, SankaranKhapane, Prashant
Electric vehicles rely on accurate estimation of battery states to operate safely and efficiently. Traditionally, the state estimation is pack level and based on empirical models developed to capture the dynamics of a representative battery pack and hence falls short in accounting for cell-to-cell variations. These variations become more pronounced as the cells age within a battery pack under non-homogeneous mechanical, thermal, manufacturing, and electrical conditions. It is challenging to adapt the traditional physics-based model to changing battery dynamics in real-time. To improve the state estimation at the cell level, a data-driven approach utilizing streamed data from vehicles enabled by connectivity has been shown in this paper. While traditional data-driven approaches result in large models and require large quantities of data for training, the proposed method relies on combining the underlying physics of the electrochemical model with novel data-driven modeling techniques
Gupta, ShobhitHegde, BharatkumarHaskara, IbrahimShieh, Su-YangChang, Insu
Most of the plug-in electric vehicles (EVs) available today are retrofitted versions of the corresponding co-existing higher-volume internal combustion (IC) engine-based models. In order to make the former category of vehicles more attractive in terms of driving range, a Li-ion battery pack of substantive energy capacity (in kWh) is needed. The latter requirement is likely to add to the weight of an EV in relation to its conventional counterpart. This potential weight increase can to an extent be checked by aggressively scouring for opportunities for weight reduction of the BIW (Body-In-White) of the original platform. The current work suggests a practical and efficient CAE (Computer-Aided Engineering)-driven approach for weight optimization of the BIW of a vehicle without affecting its styling, modal frequencies and front crashworthiness performance. It is assumed that there would be no major changes to manufacturing resources associated with the current design although limited
Deb, AnindyaZhu, Feng
To address the challenges of complex operational simulation for Electric Vehicles (EVs) caused by spatial-temporal variations and driver behavior heterogeneity, this study introduces a dynamic operation simulation model that integrates both data-driven and physics-based principles, referred to as the Electric Vehicle-Dynamic Operation Simulation (EV-DOS) model. The physics-based component encompasses critical aspects such as the powertrain energy transfer module, heat transfer module, charge/discharge module, and battery state estimation module. The data-driven component derives key features and labels from second-by-second real-world vehicle driving status data and incorporates a Long Short-Term Memory (LSTM) network to develop a State-of-Health (SOH) prediction model for the EV power pack. This model framework combines the interpretability of physical modeling with the rapid simulation capabilities of data-driven techniques under dynamic operating conditions. Finally, this study
Jing, HaoHU, JianyaoOuyang, JianhengOu, Shiqi(Shawn)
Fuel economy and the ability to maintain the state of charge (SOC) of the battery are two key metrics for the energy management of a full-power fuel cell hybrid vehicle fitted with a small-capacity battery pack. To achieve stable maintenance of SOC and near-optimal fuel consumption, this paper proposes an adaptive equivalent consumption minimization strategy (PA-ECMS) based on power prediction. The strategy realizes demand power prediction through a hybrid deep learning model, and periodically updates the optimal equivalent factor (EF) based on the predicted power to achieve SOC convergence and ensure fuel economy. Simulation results show that the hybrid deep learning network model has high prediction accuracy with a root mean square error (RMSE) of only 0.733 m/s. Compared with the traditional ECMS based on SOC feedback, the PA-ECMS effectively maintains the battery SOC in a more reasonable range, reduces the situation of the fuel cell directly charging the power cell in the high
Gao, XinyuJu, FeiChen, GangZong, YuhuaWang, Liangmo
Any vehicle traveling on roads interacts with various profiles of surface roughness, which can be best characterized by randomness. The resulting random vibrations not only expose passengers to unpleasant physical shakes and noises, but also impart fatigue damage to nearly everything installed on the vehicle. In today’s robust design process, it is highly desirable to predict fatigue damage in the early design phase, in order to prevent any durability problems in the future, especially for electric vehicles. Historically, the conventional approach to tackling the problem of fatigue damage has involved cycle-counting stress or strain responses, obtained through step-by-step numeric solutions in the time-domain. However, the most effective method of predicting fatigue in random vibration lies in the frequency domain. Such a spectrum-based approach is greatly advantageous because it does not have to deal with expensive and tedious simulations involving millions of time instants of
Yang, ZaneFouret, Charles
In modern vehicles, effective thermal management is crucial for regulating temperatures across various components and sub-systems, ensuring optimal performance, efficiency, safety, and passenger comfort. As the industry shifts towards reducing carbon emissions, powertrain electrification - encompassing electric and hybrid vehicles - has emerged as a prominent trend. This transition introduces greater complexities, as the powertrain system must now precisely control the temperatures of not only traditional components but also batteries, power electronics, and motors. Typically, the performance of vehicle-level thermal management systems is fully evaluated only after physical prototypes are developed and tested, particularly during summer and winter road trials. Conducting development and validation at such a late stage in the development process significantly increases both development risks and costs. To address these challenges, a comprehensive vehicle-level thermal management
Xu, ZhengQiu, JieLu, YuanWang, Yingzhen
Electrifying truck fleets has the potential to improve energy efficiency and reduce carbon emissions from the freight transportation sector. However, the range limitations and substantial capital costs with current battery technologies imposes constraints that challenge the overall cost feasibility of electrifying fleets for logistics companies. In this paper, we investigate the coupled routing and charge scheduling optimization of a delivery fleet serving a large urban area as one approach to discovering feasible pathways. To this end, we first build an improved energy consumption model for a Class 7-8 electric and diesel truck using a data-driven approach of generating energy consumption data from detailed powertrain simulations on numerous drive cycles. We then conduct several analyses on the impact of battery pack capacity, cost, and electricity prices on the amortized daily total cost of fleet electrification at different penetration levels, considering availability of fast
Wendimagegnehu, Yared TadesseAyalew, BeshahIvanco, AndrejHailemichael, Habtamu
Efficient thermal management is essential for maintaining the performance and safety of large-capacity battery packs. To overcome the limitations of traditional standalone air or liquid cooling methods, which often result in inadequate cooling and uneven temperature distribution, a hybrid air-liquid cooling structure was designed. A three-dimensional model was developed, and heat transfer and fluid flow characteristics were analyzed using computational fluid dynamics (CFD) simulations. Experimental validation was carried out through discharge temperature rise tests on individual battery cells and flow resistance tests on the liquid cooling plate. The thermal performance of the hybrid system was compared to that of standalone cooling methods under various discharge rates. The results indicated that the hybrid system significantly enhanced cooling performance, reducing the maximum temperature difference by 5.54°C and 3.37°C, and the peak temperature by 11.66°C and 4.5°C, compared to air
Li, HaoGuo, YimingZhou, FupengLi, KunyuanShangguan, Wen-Bin
Evaluating the structural strength and thermal performance of electric vehicle battery packs is crucial for enhancing safety and performance. In two-wheelers, the battery pack must withstand significant vibrational forces, shocks from impacts, and accidental drops, all of which can compromise the battery's structural integrity. A failure in this regard could lead to dangerous outcomes such as short circuits, fire, or even explosions, making the robustness of the battery pack crucial for both safety and performance. Conducting physical vibration, shock, and drop tests on a battery pack is one way of proving the robustness of the design, however it is time and resource consuming leading to an iterative approach of design improvement which also demands stringent safety measures and specialized equipment’s. The present work focuses on computer-aided virtual simulations at the design stage to evaluate the structural integrity of the battery pack assembly, optimize battery design, and reduce
Shinde, PranavBalachandran, KarthikGandhi, ChaitanyaMishra, SonuDeshmukh, HarishKarve, MadhuraChittur, SrikrishnaDas, Alok
Ensuring uniform coolant distribution in electric buses is crucial for battery performance, longevity, and thermal stability. This study optimizes the battery thermal management system (BTMS) for an 18-m electric bus, addressing uneven coolant flow to battery packs caused by pressure drop variations. One-dimensional (1D) simulations were chosen for their ability to quickly and efficiently analyze flow and pressure variations, providing a fast solution to optimize coolant distribution across the system. dP-Q curves for the BTMS pump and battery packs were integrated into the 1D model based on supplier data, while the flow resistances of other components (pipes, bends) were calculated using KULI software. To correct flow imbalances, pipe diameters were adjusted to increase resistance in over-cooled areas, redistributing coolant to under-cooled sections. This modification resulted in a balanced flow and improved thermal consistency, contributing to longer battery life. Validation showed
Birgül, Çağrı EmreMeydan, Ömer
In the pursuit of enhancing the reliability of battery health management methods, accurate estimation of state of charge (SOC) and state of health (SOH) remains a critical challenge. This article presents a novel fusion estimation algorithm, combining a dual extended Kalman filter (EKF) with a particle filter (PF), based on a fractional-order 2-RC battery model (FOEKPF–EKF). The 2-RC fractional-order model (FOM) is first implemented to accurately depict the battery’s discharge behavior, outperforming traditional integer-order models (IOM) due to its ability to capture the cell’s intrinsic diffusion and dispersion characteristics. An adaptive genetic algorithm (AGA) is then employed for optimal parameter identification of the FOM, ensuring precise modeling. Following this, the FOEKPF–EKF algorithm is developed, leveraging the strengths of FOM, EKF, and PF to effectively handle uncertain, time-varying noise, thereby improving SOC estimation accuracy. The reliability of the proposed
Wang, KeMo, JianLi, DanZhou, YingYuan, Zhangyong
The scope of this information report is battery packs containing lithium-ion battery cells with liquid electrolyte, focusing on automotive applications like passenger cars and trucks. Considering different operating conditions as well as durability and safety requirements, some of its contents might provide guidance for other applications. The same applies to battery cell chemistries not covered in this report (e.g., sodium-ion or solid-state battery cells).
Battery Pack Venting Committee
With current and future regulations continuing to drive reductions in carbon dioxide equivalent (CO2e) emissions in the on-road industry, the off-road industry is also likely to be regulated for fuel and CO2e savings. This work focuses on converting a heavy-duty off-road material handler from a conventional diesel powertrain to a plug-in series hybrid, achieving a 49% fuel reduction and 29% CO2e reduction via simulation. Control strategies were refined for energy savings, including a regenerative braking strategy to increase regenerative braking and a load-following hydraulic strategy to decrease electrical energy consumption. The load-following hydraulic control shuts off the hydraulic electric machine when it is not needed—an approach not previously seen in a load-sensing, pressure-compensated system. These strategies achieved a 24.1% fuel savings, resulting in total savings of 61% in fuel and 41% in CO2e in the plug-in series compared to the conventional machine. Beyond control
Goodenough, BryantCzarnecki, AlexanderRobinette, DarrellWorm, JeremySubert, DavidKiefer, DylanHeath, MatthewBrunet, BobKisul, RobertLatendresse, PhilWestman, JohnBlack, Andrew
The global environmental pollution issue and global warming caused by internal combustion engines (ICE) have prompted automotive manufacturers to pioneer the development of emission-free or pure electric vehicles. The Indian government declared that all ICE cars will be replaced by electric vehicles by 2030. Thus, after 2030, ICE vehicle scrapping will be prevented by retrofitting. Transforming traditional cars into electric vehicles in Indian markets reduces emissions and enhances sustainability. This work aims to transform the Maruti Suzuki Zen petrol car into a fully electric vehicle while keeping its pristine transmission system with an onboard charging system. During the fieldwork, all unnecessary components of the ICE are removed to transform it into an electric vehicle. The E Zen’s maximum speed, gradeability, and driving range on both level and sloping roads were also examined. The performance was assessed using a 72 V, 144 Ah lithium-ion battery pack and an AC induction motor
Suryavanshi, Shweta S.Ghanegaonkar, Pravin M.Kawade, Ramesh K.
The usage of Electric Vehicles (EVs) and the annual production rate have increased significantly over the years. This is due to the development of rechargeable electrical energy storage system (battery pack), which is the main power source for EVs. Lithium-ion batteries (LIBs) pack is predominantly used across all major vehicle categories such as 2-wheelers, 3-wheelers and light commercial vehicle. LIB is one of the high energy-dense sources of volume. However, LIBs have a challenge to pose a risk of short circuits and battery pack explosions, when exposed to damage scenarios. In the present study, the controlled crash analysis is performed for various velocities ranging from 50 kmph to 72 kmph against an obstruction directly and at an offset from the wheel, so as to mimic the real-world crash of high-speed two-wheelers. The behavior of the battery enclosure is examined through evaluating the structural integrity of the battery enclosure used in a realistic two-wheeler after crash at
Venkatesan Sr, AiyappanNelson, N RinoHariharan Nair, Adarsh
Electric vehicles (EVs) are a clean, sustainable alternative to conventional internal combustion engines representing a paradigm shift in the transportation sector. Electric vehicles (EVs) have significantly improved in performance in battery technology. With the rapid proliferation of Electric Vehicles (EVs), effective Battery Thermal Management Systems (BTMS) are essential to ensure optimal performance and longevity of the battery packs. This study aims to investigating the effect of Phase Change Materials (PCM) in a hybrid cooling of liquid cold plate with battery pack. With the rapid proliferation of Electric Vehicles (EVs), effective Battery Thermal Management Systems (BTMS) are essential to ensure optimal performance and longevity of the battery packs. This study aims to investigating the effect of Phase Change Materials (PCM) in a hybrid cooling of a liquid cold plate with the battery pack. In models of battery cell arrangement of 5x13 arrays of aligned modules with the PCM and
S, PalanisamySelvan, Arul Mozhi
Due to energy competition and scarcity of natural gas resources in recent years, fossil fuels have been significantly replaced by renewable energy sources. Because of this, battery electric vehicles (EVs) and hybrid electric vehicles (HEVs) are getting adopted instead of internal combustion engine (ICE) vehicles. The main component of electric vehicles and hybrid vehicles is the battery management system (BMS), which is necessary to ensure that the battery pack operates efficiently, reliably, and effectively. The battery should not degrade its performance by charging and discharging too much, which can lead to serious failures if the battery is left to its end of life. This paper aims to present a novel Machine learning-based battery health estimation algorithm by mitigating risks associated with real-time battery data. This study used proprietary data collected from nickel-cobalt-aluminum (NCA) chemistry battery cells in electric vehicles. Machine learning models are trained to
Joshi, UmitaMandhana, Abhishek
The world is moving towards a green transportation system. Governments are also pushing for green mobility, especially electric vehicles. Electric vehicles are becoming more popular in Europe, China, India, and developing countries. In EVs, the customer's range anxiety and the perceived real-world range are major challenges for the OEMs. The OEMs are moving towards a higher power-to-weight ratio. Energy density plays a crucial role in the battery pack architecture to increase the vehicle range. Higher capacity battery packs are needed to improve the vehicle's range. The battery pack architecture is vital in defining the gravimetric and volumetric energy densities. The cell-to-pack battery technique aims to achieve a higher power-to-weight ratio by eliminating unnecessary weight in the battery architecture. The design of battery architecture depends on the cell features such as the cell shape & size, cell terminal positions, vent valve position, battery housing strength requirements
K, Barathi Raja
The selection of the key components of proton exchange membrane fuel cell (PEMFC) crucially impacts the performance. This work developed a model of the fuel cell system model to simulate the power consumption of component and system and the temperature dynamic response of stack in real systems. A PEMFC simulation model was developed based on AMESim, encompassing the air supply subsystem, hydrogen supply subsystem, and the hydrothermal management subsystem. The parameters for the flow and pressure of hydrogen, air, and water were established based on the operational requirements to ensure efficient stack performance. Furthermore, a PID control model was employed to regulate the flow and pressure parameters of hydrogen, air, and water, in accordance with the operational requirements, to ensure optimal PEMFC system performance.The purpose of this study is to predict the power consumption of the key components and the overall system, as well as to analyze the compliance with fuel supply
Yu, PeiwenWang, YanboZhao, XiaojunPan, FengwenShi, BaofanYang, FengQiao, XingnianShan, FengxiangCheng, XiaoxianZhang, YaranZhang, ChunSun, YulingGao, YongFeng, Gang
A power battery parameter acquisition device was designed and developed with STM32 as the core, featuring the functions of a battery management system (BMS) to ensure the safety and stability of the battery pack during operation. The device includes functions such as battery charge and discharge management, battery safety protection, and battery status monitoring, enabling real-time monitoring of cell parameters. The hardware design covers the power circuit, charge and discharge cycle circuit, battery acquisition circuit, communication module circuit, and single-cell balancing circuit. The software part completes the design and development of each functional module. This paper addresses issues in battery management systems, such as low accuracy in battery parameter acquisition, inconsistencies between individual cells, and weak BMS balancing capabilities. The developed acquisition device can collect parameters for 15 series-connected power batteries, and conduct sampling tests of cell
Ge, RenzhouDuan, Chendong
To investigate the characteristics of a battery direct-cooling thermal management system integrated with the passenger compartment air-conditioning in a range-extended hybrid electric vehicle (REV), a model of the vehicle’s direct-cooling and liquid-cooling thermal management systems was established in GT-SUITE software. The findings are as follows: (1) Under high-temperature fast-charging conditions, the direct-cooling thermal management system exhibited improved performance indicators compared to the liquid-cooling system. Specifically, the charging time was reduced by 3.8%, the maximum heat exchange power increased by 27.33%, the battery temperature decreased by 2.37°C, the thermal decay rate was only 6%, and the average system energy efficiency ratio increased by 8.37%. (2)The outlet pressure of the direct-cooling plate significantly affected the temperature reduction of the battery pack during high-temperature fast-charging. The results indicated that within a certain range, a
Li, Li-JieSu, ChuqiWang, Yi-PingYuan, Xiao-HongLiu, Xun
Lithium-ion batteries have become the preferred energy storage component for electric vehicles due to their excellent overall performance. However, during use, they generate heat, causing the battery temperature to rise and the internal and surface temperatures to be inconsistent, affecting the battery’s performance and even leading to thermal safety issues. It is difficult to obtain real-time internal temperature measurements in actual vehicles. Therefore, accurately estimating the internal temperature of the battery, promptly detecting thermal faults, and ensuring efficient and safe operation of the battery are of great importance. This paper establishes a dual-state thermal model based on extended Kalman filtering for a square ternary lithium battery, which achieves real-time updating of external thermal resistance and online estimation of core battery temperature. For this type of lithium battery and its battery module, an experimental platform was set up, and basic performance
Jin, YuntaoLiu, XuanzhuoZhang, ZhengjiePeng, ZhaoxiaYang, Shichun
Lithium-iron phosphate batteries are widely used in energy storage systems and electric vehicle for their favorable safety profiles and high reliability. The designing of an efficient cooling system is an effective means of ensuring normal battery operation, improving cycle life, and preventing thermal runaway. In this paper, we proposed a forced-convection air cooling structure aiming at uniform temperature distribution and reducing the maximum temperature. The initial step was constructing a heating model for a single LiFeO4 battery. A source function was derived from the experimental data, which described the variation in heating power with discharge depth. This function was then used to create a dynamic loading of the battery heating model. Subsequently, a three-dimensional model of a 7-series and 2-parallel battery pack was constructed. Seven schemes were designed on the basis of the traditional Z-shaped structure, with the position of the air inlet and outlet altered. The
Zhang, JunhongLiu, TingDai, HuweiLin, Jiewei
Thermal runaway propagation (TRP) within lithium-ion batteries (LIBs) poses critical barriers to the safe operation and large-scale application of cell-to-chassis (CTC) batteries. Such events can lead to severe safety incidents, including explosions and fires, in systems utilizing these batteries. However, there is a lack of research on the thermal runaway model coupled with vented gases at the CTC systems. In this study, a thermal runaway coupling model for the battery pack system was established utilizing Star-CCM+ software, allowing for the examination of thermal runaway propagation characteristics and vented gas characteristics a within power battery systems based on the measured parameters of battery thermal safety characteristic. The simulation results indicated that once thermal runaway becomes uncontrollable, combustible flue gases escape through the exhaust hole located on the side plate of the cell, thereby facilitating heat transfer to adjacent cells. The primary components
Ma, NiyaZhang, AnweiZhou, WentaiZhou, YouJia, YuanFan, Zehong
This paper proposes a theoretical drive cycle for the competition, considering the battery pack project under design. The vehicle has a non-reversible, double-stage gear train, created without a dynamic investigation. To evaluate the effect on performance, several ratios were analyzed. Dynamic model uses Eksergian’s Equation of Motion to evaluate car equivalent mass (generalized inertia), and external forces acting on the vehicle. The circuit is divided into key locations where the driver is likely to accelerate or brake, based on a predicted behavior. MATLAB ODE Solver executed the numerical integration, evaluating time forward coordinates, creating the drive cycle. Linear gear train results provided data as boundary conditions for a second round of simulations performed with epicyclic gear trains. Model is updated to include their nonlinearity by differential algebraic equation employment with Lagrange multipliers. All data undergoes evaluation to ascertain the mechanical and
Rodrigues, Patrícia Mainardi TortorelliSilveira, Henrique Leandro
With the growing demand for electric vehicles (EVs), ensuring the safety and efficiency of battery systems is critical. This paper presents a methodology integrating 3D Finite Element Methods (FEM) and Computational Fluid Dynamics (CFD) to analyze battery systems, effectively mitigating thermal runaway phenomena. By combining FEM and CFD, our methodology provides a comprehensive approach to assess thermal management strategies within battery systems. This integration enables engineers to accurately simulate thermal behavior, predict hotspots, and optimize cooling strategies, thereby mitigating the risk of thermal runaway. Furthermore, our methodology minimizes the reliance on costly and time-intensive physical prototypes and testing. By leveraging virtual simulations, engineers can rapidly iterate through design modifications, assess their impact on thermal performance, and make informed decisions early in the development process. This article demonstrates the efficacy and accuracy of
Melo, Caiuã CaldeiraAraujo, Pedro HenriqueCastro Orefice, FabioCury, Davi MachadoVieira, Tiago Augusto SantiagoAbdu, Aline Amaral QuintellaMonteiro, Henrique Carlos
The behavior of mechanical structures subjected to impacts is a topic of great relevance, with one of its applications being in the context of collisions on urban roads. According to data obtained from the electric bus monitoring platform E-Bus Radar, the fleet of vehicles with this means of propulsion has grown significantly in the last 6 years. Just from 2022 to 2023, the growth was 51%, jumping from 2669 to 4020 registered vehicles in Latin America. In this context, the present study investigated the behavior of the rear structure of an electric bus - EB in a rear-end collision scenario. The study of this region was motivated by the fact that it houses 4 out of the 12 battery packs and other electrical components. The main objective of this work is to evaluate the efficiency of the anti-intrusion and impact absorption mechanism to ensure the integrity of the batteries. Since damage in a collision can release different types of flammable electrolytes and even trigger a fire, posing a
Menino, Bruno G.Sordi, AlexsandroBraida, Claudio A. B.Biondo, FelipeSpengler, FelipeMagnabosco, Guilherme
The computational efficiency of dynamic programming (DP) energy management strategies is enhanced through the discretization of state variables in this study. The upper and lower bounds of SOC (State of Charge) and the SOC variation at each moment are calculated using the maximum and minimum power of the range extender, which eliminates invalid state combinations and significantly reduces the size of the feasible state set. To investigate the impact of different sampling intervals on SOC during various phases, intervals at 1s, 2s, 4s, 5s, and 10s are set for both charge retention and consumption phases. It is revealed that in the consumption phase, different sampling intervals minimally affect SOC, with trajectories closely matching. However, in the charge retention phase, the impact of different sampling intervals on SOC is significant, resulting in considerable differences in SOC trajectories. Additionally, in the charging-discharging (CD) phase, fuel consumption significantly varies
Wei, ChangyinWei, YiyuYang, DinghaoWang, YichenLiu, Dezheng
Electrified powertrain is the essential need to meet the C02 and NOX emissions compliance. Thereby focus of automotive industry is shifting towards to Electric Vehicle (EV). Thermal Runaway (TR) is still a big challenge to the safety of the EV. The major cause of TR is internal short-circuit of batteries under external mechanical abuse. When Anode and cathode of the battery comes in contact and short circuit happens. Internal short circuit is causing high amount of current flow and energy generation which leads to high increase in temperature. The approach that is used till date by OEMs is to protect the battery pack from structural damage during crash resulting into overdesigning of the vehicle. In this paper, detailed FE modeling of the battery system is considered for evaluating internal short circuit and TR. Solid Randle circuit is used for Multiphysics coupling simulation in Ls-dyna. Solid Randle circuits solves this Multiphysics and derives these electrical and thermal parameters
Jain, TriptiBonala, SastryDangare, Anand
Items per page:
1 – 50 of 1090