Browse Topic: Battery packs
In the realm of electric and hybrid vehicles (EVs, HEVs), the intelligent thermal system control unit is essential for optimizing performance, safety, and efficiency. Unlike traditional internal combustion engines, EVs rely heavily on battery performance, which is significantly influenced by temperature. An intelligent thermal management system helps battery packs to operate within their optimal temperature range, enhancing energy efficiency, extending battery life, and maximizing driving range. Furthermore, it plays a crucial role in managing the thermal dynamics of power electronics and electric motors, preventing overheating, and ensuring reliable operation. As the demand for high-performance and efficient electric vehicles grows, the integration of advanced thermal control strategies becomes increasingly vital, paving the way for innovations in EV design and functionality. One of the key aspects of an intelligent thermal system control is their prediction capability. These
Thermal runaway in electric vehicle (EV) batteries is rare, but it can happen, producing smoke, fire, and explosions. This uncontrollable, self-heating state can transfer intense heat to adjacent cells and cause pressure buildups that exceed the mechanical limits of cell casings. Since the gases that can form inside a battery cell are flammable, a spark or other ignition source could propagate fire or lead to an explosion and cause the violent venting of shrapnel or particulates, putting vehicle occupants and emergency responders at risk. To support EV safety, silicone thermal management materials are placed between battery cells and between battery modules. For battery pack enclosures, however, mica sheets traditionally have been used as protective barriers. Mica provides thermal and electrical insulation, but sheets made of this mineral are limited in terms of thermal performance, mechanical durability, processability, and sustainable sourcing. To address these challenges, advanced
BATSS project objective is to design a safe, effective and sustainable battery pack. To achieve this, the battery system (BS) will be mechanically, electrically and thermally optimized using cutting edge technology. Consequently, the battery system includes innovative 4695 cylindrical cells and advanced thermal management, carried out with the Miba FLEXCOOLER®. This work focuses on the BS thermal optimization using system simulation tools. First a simplified version of the BS is simulated with all physical phenomena involved in thermal behavior to identify first order parameters. It appears that various BS component and heat transfer can be neglected in comparison with the heat transfer due to cooling system. Then the simulation of the full battery system is conducted under nominal condition. Cooling system appears to be performant as it allows a controlled averaged temperature and very low cell-to-cell temperature variability. Finally, impact of both design and operating parameters is
Items per page:
50
1 – 50 of 1137