Browse Topic: Battery packs

Items (1,137)
This study presents a methodology to develop a new 25kWh battery pack for off-highway application. Initially an enclosure space is extracted from tractor model maintaining minimum space with adjacent components. Based on available space, various combination of cell form factors and different cell chemistries are evaluated considering operating ambient temperature range (-20 to 45 deg C) and charge/discharge rate 1C. Cylindrical NMC type cell with indirect cooling system fulfils all our technical requirements. However, complete battery pack thermal simulation is carried out for ensuring battery pack safety and limited deterioration with different discharge rate and wider temperature range. The battery pack model contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. Cell characterization experimental data is used for estimating cell thermal capacity and IR behavior. Battery pack model is tested with different Charge/discharge rates. Five
Nain, AjayLamba, Shamsherjayagopal, Sdhir, Anish
The study emphasizes on detection of different faults and refrigerant leakage as well as performance investigation of automobile air conditioning system for an electric vehicle by varying various operating conditions. A refrigerant leak in an EV isn't just an inconvenience; it's a potential threat to vehicle range and usability, lifespan and health of the expensive battery pack, overall vehicle performance, passenger safety and comfort, component longevity (motor, power electronics), environmental responsibility. Due to the refrigerant leakage, the cooling system performance degrades, and components tend to fail. Because of that this study is focusing on deriving an algorithm to have an early detection of fault and leakage in the vehicle. The performance of the system is predicted for actual conditions of operation encountered by the automobile air conditioning system. The objective of the present work includes predicting the causes and effects of refrigerant leakage in AC system of
Bezbaruah, PujaYadav, AnkitPilakkattu, Deepak
In the realm of electric and hybrid vehicles (EVs, HEVs), the intelligent thermal system control unit is essential for optimizing performance, safety, and efficiency. Unlike traditional internal combustion engines, EVs rely heavily on battery performance, which is significantly influenced by temperature. An intelligent thermal management system helps battery packs to operate within their optimal temperature range, enhancing energy efficiency, extending battery life, and maximizing driving range. Furthermore, it plays a crucial role in managing the thermal dynamics of power electronics and electric motors, preventing overheating, and ensuring reliable operation. As the demand for high-performance and efficient electric vehicles grows, the integration of advanced thermal control strategies becomes increasingly vital, paving the way for innovations in EV design and functionality. One of the key aspects of an intelligent thermal system control is their prediction capability. These
Golgar, SamratBoobalan, Anand
The transition towards sustainable transportation necessitates the development of advanced thermal management systems (TMS) for electric vehicles (EVs), hybrid electric vehicles (HEVs), hydrogen fuel cell vehicles (FCVs), and hydrogen internal combustion engine vehicles (HICEVs). Effective thermal control is crucial for passenger comfort and the performance, longevity, and safety of critical vehicle components. This paper presents a rigorous and comparative analysis of TMS strategies across these diverse powertrain technologies. It systematically examines the unique thermal challenges associated with each subsystem, including cabin HVAC, battery packs, fuel cell stacks, traction motors, and power electronics. For cabin HVAC, the paper explores methods for minimizing energy consumption while maintaining thermal comfort, considering factors such as ambient temperature, humidity, and occupant load. The critical importance of battery thermal management is emphasized, with a focus on
K, NeelimaK, AnishaCh, KavyaC, SomasundarSatyam, SatyamP, Geetha
The arrangement of multiple cells within a battery pack is crucial to have an optimized thermal performance and pressure drop. This paper presents a comparative analysis of thermal battery cooling performance of an air-cooled battery pack using inline and staggered arrangement of 18650 sized cylindrical cells with different cell spacings. The key parameters such as air pressure drop and cell (average/maximum/minimum) temperatures are compared for operations at different C-rates, air inlet temperature, and air inlet velocities. The results demonstrate that the staggered configuration with optimal spacing offers better thermal performance and temperature distribution compared to the inline one. Specifically, the staggered setup with optimal gap achieves a lower cell average and maximum temperatures indicating more efficient cooling and uniform thermal distribution. This study highlights the advantages of battery spacing and configuration for improved thermal and pressure drop performance
Bharsakale, YashNadge, PankajManna, Suvankar
A battery bicycle with luggage space is designed and developed to have variable luggage space available to the rider. The developed design with bicycle frame has an innovative sideway moving frame for variable need-based space. The design was prepared for an e-commerce delivery application, suppling products through an easy, quick, and low-cost mode of transport with variable spacing options. The design was prepared for 160 kg weight, with 210 cm, 90 cm, and 35 cm as length height and width, respectively. The designed bicycle can carry luggage up to 100 kg. The design is powered by a 250-watt electric motor and can move with a maximum speed of 24 km/hr. The steering mechanism, cargo bucket, and the base frame are made in two parts for commuter convenience. The cargo bucket is front-mounted, on a sliding frame that enables one half of the bucket to be slid into the other half through sideways movement by fitted channels. The design has both electric and non-electric driving modes. The
Vashist, DevendraSatti, HarshAwasthi, A.KMUKHERJEE, SOURAV
Efficient thermal management is vital for electric vehicles (EVs) to maintain optimal operating temperatures and enhance energy efficiency. Traditional simulation-based design approaches, while accurate, are often computationally expensive and limited in their ability to explore large design spaces. This study introduces a machine learning (ML)-based optimization framework for the design of an EV cooling circuit, targeting a 5°C reduction in the maximum electric motor temperature. A one-dimensional computational fluid dynamics (1D-CFD) model is utilized to generate a Design of Experiments (DOE) matrix, incorporating key parameters such as coolant flow rate and heat exchanger dimensions. A Radial Basis Function (RBF) neural network is trained on the simulation data to serve as a surrogate model, enabling rapid performance prediction. Optimization is performed using the Non-Dominated Sorting Genetic Algorithm II (NSGA2), yielding three distinct design solutions that meet the thermal
Paul, KavinGanesan, ArulMansour, Youssef
Thermal management of electric vehicle (EV) battery systems is critical for ensuring optimal performance, user safety, and battery longevity. Existing high-fidelity simulation methods provide detailed thermal profiles, but their computational intensity makes them inefficient for early design iterations or real-time assessments. This paper introduces a streamlined, physics-based one-dimensional transient thermal model coded in MATLAB for efficiently predicting battery temperature behavior under various driving cycles. The model integrates vehicle dynamics to estimate power demands, calculates battery current output and heat generation from electrochemical principles, and determines the battery temperature profile through a 1D conduction model connected to a thermal resistance network boundary condition that incorporates the effect of coolant heat capacity. The model achieved prediction errors below 1% when compared to analytical solutions for conditions of no heat generation and steady
Builes, IsabelMedina, MarioBachman, John Christopher
Thermal runaway in electric vehicle (EV) batteries is rare, but it can happen, producing smoke, fire, and explosions. This uncontrollable, self-heating state can transfer intense heat to adjacent cells and cause pressure buildups that exceed the mechanical limits of cell casings. Since the gases that can form inside a battery cell are flammable, a spark or other ignition source could propagate fire or lead to an explosion and cause the violent venting of shrapnel or particulates, putting vehicle occupants and emergency responders at risk. To support EV safety, silicone thermal management materials are placed between battery cells and between battery modules. For battery pack enclosures, however, mica sheets traditionally have been used as protective barriers. Mica provides thermal and electrical insulation, but sheets made of this mineral are limited in terms of thermal performance, mechanical durability, processability, and sustainable sourcing. To address these challenges, advanced
Thermal management solutions in power electronics applications are of prime importance to meet the needs of the ever-increasing demands on higher power and torque density of the traction motor and controller. Traction inverters are essential power electronic devices that convert direct current (DC) supply from the battery pack of the vehicle to three-phase alternating current (AC) output and vice versa. Estimation of die junction temperatures and cooling system pressure drop is necessary for assessing the maximum heat load capacity of the traction inverter system and coolant pump capacity requirements. The system comprises of a power module and a water–glycol–based cooling domain with heat sink. This article proposes a 1D model for accurate predictions of junction temperatures on the SiC die, temperature rise of the cooling medium, and pressure drop across a custom heat sink fluid domain. The model is built to handle steady-state and transient conditions for varying heat loads on the
Ravindra, VidyasagarPrasad, PraveenSingh, IshanSureka, Sumit
The heavy-duty transportation sector is a major contributor to greenhouse gas emissions, highlighting the urgent need for zero-emission solutions. This research develops a multilevel control architecture that optimizes fuel economy and minimizes emissions in fuel cell hybrid heavy-duty vehicles, equipped with proton exchange membrane fuel cell and battery pack as main power sources. The detailed fuel cell system model incorporates reactants and thermal dynamics, including air supply, hydrogen flow, water management and their effects on reaction kinetics, membrane conductivity, water balance, performance and durability. The low-level control strategy is designed using a physics-based approach that accounts for critical constraints, including temperature, membrane water content and differential pressure between the cathode and anode. By identifying optimal setpoints for key control variables, this methodology enables the development of accurate control maps for actuator management
Bove, GiovanniAliberti, PaoloSimone, ChristianSorrentino, MarcoPianese, Cesare
Effective thermal management in battery packs is a key technology for enhancing the efficiency and longevity of battery electric vehicles (BEVs). Traditional active cooling systems can consume significant amounts of energy, thereby impacting the vehicle's overall efficiency. This paper explores the use of phase change materials (PCMs) as a complementary cooling technology, enabling both an improved active and an extended passive conditioning of battery packs. By leveraging the unique properties of PCMs, it is possible to partially operate the battery system without active cooling, thus reducing the overall energy consumption and improving vehicle autonomy. The phase change phenomenon further offers the benefit of a homogeneous temperature distribution within the battery pack. This study addresses the potential of PCMs as a thermal management solution for battery packs by firstly identifying suitable materials meeting requirements specific to such application. In addition, the paper
Fandakov, AlexanderNolte, OliverHerzog, AlexanderSens, Marc
Nowadays, Battery Electric Vehicles (BEVs) are considered an attractive solution to support the transition towards more sustainable transportation systems. Although their well-known advantages in terms of overall propulsion efficiency and exhaust emissions, the diffusion of BEVs on the market is still reduced by some technical bottlenecks. Among those, the uncertainty about the expected durability of the vehicle's onboard battery packs plays a key role in affecting customer choice. In this context, this paper proposes the use of model-based datasets for training a driving support system based on machine learning techniques to be installed on board. The objective of this system is to acquire vehicle, environmental, and traffic information from sensor’ networks and provide real-time smart suggestions to the driver to preserve the remaining useful life of vehicle components, with particular reference to the battery pack and brakes. For the generation of the training dataset, first, a set
Bernardi, Mario LucaCapasso, ClementeIannucci, LuigiSequino, Luigi
On the path to the decarbonization of the transport sector, the development of electric vehicles (EVs) is crucial to meeting the targets set by international regulatory bodies. EVs operate with zero tailpipe emissions and offer high energy efficiency and flexibility; however, challenges remain in achieving a fully sustainable electricity supply. In this context, powertrain design plays a fundamental role in determining vehicle performance and mission feasibility, which are strongly influenced by operating conditions and application characteristics, such as driving profiles and ambient temperature. A key challenge is the optimal sizing of components, particularly the battery pack and the electric motor. Therefore, a structured and methodological approach to powertrain design is essential to ensuring an optimal configuration. To this end, the project focuses on an integrated approach based on a master-and-slave modeling framework applied to a light-duty commercial vehicle at two levels
Bartolucci, LorenzoCennamo, EdoardoGrattarola, FedericoLombardi, SimoneMulone, VincenzoTribioli, LauraAimo Boot, Marco
BATSS project objective is to design a safe, effective and sustainable battery pack. To achieve this, the battery system (BS) will be mechanically, electrically and thermally optimized using cutting edge technology. Consequently, the battery system includes innovative 4695 cylindrical cells and advanced thermal management, carried out with the Miba FLEXCOOLER®. This work focuses on the BS thermal optimization using system simulation tools. First a simplified version of the BS is simulated with all physical phenomena involved in thermal behavior to identify first order parameters. It appears that various BS component and heat transfer can be neglected in comparison with the heat transfer due to cooling system. Then the simulation of the full battery system is conducted under nominal condition. Cooling system appears to be performant as it allows a controlled averaged temperature and very low cell-to-cell temperature variability. Finally, impact of both design and operating parameters is
Chevillard, StephanePopp, HartmutGalarza, IgorPetit, Martin
Nowadays, a push towards decarbonisation to reduce the problem of the environmental pollution is increasingly pressing. In the current automotive context, a tendency among the cars manufacturer to consider the development of hybrid vehicles is growing. Indeed, thanks to the battery downsizing due to the addition of the range extender (REx), a hybrid electric vehicle (HEV) allows to overcome the limitations of pure electric vehicles (EV) such as the infrastructure which is linked to the battery charging process. Moreover, the performance of battery in terms of efficiency and operating limits are strictly related with the temperature of the battery pack and with the energy management strategy (EMS). The proposed work aims to analyse the performance of a Plug-In series hybrid vehicle (Plug-In HEV) depending on the temperature of battery pack and the EMS. The considered Plug-In HEV is equipped with a hydrogen-fuelled internal combustion engine that is used as REx. First, a lumped dynamic
Cervone, DavideSicilia, MassimoPolverino, PierpaoloPianese, Cesare
Nowadays, electric vehicles (EVs) are considered one of the most promising solutions for reducing pollutant emissions related to the road transportation sector. Although these vehicles have achieved a high level of reliability, various challenges about Li-ion storage systems and their thermal management systems remain unresolved. This work proposes a numerical and experimental study of a lithium-ion storage cell with a scaled battery thermal management system (BTMS). In particular, a channel plate for liquid cooling is specifically designed and manufactured for the cell under test. The BTMS is based on the development of an indirect liquid cooling system with optimal control of the coolant flow rate to fulfill the thermal requirements of the system. A lumped parameters approach is used to simulate the electro-thermal behavior of the system and to analyze the effects of real-time control strategies on the temperature of the cell under test. An ad-hoc experimental test rig is set up for
Capasso, ClementeCastiglione, TeresaPerrone, DiegoSequino, Luigi
Effective thermal management is essential for optimizing the performance and longevity of lithium-ion battery packs, particularly in electric vehicles facing extreme temperature conditions. This study investigates the performance of an indirect liquid cooling system used for pre-cooling stationary electric vehicle battery packs, focusing on scenarios such as vehicle sleep mode in high-temperature conditions. The cooling system, which utilizes a water-glycol mixture flowing at 1.2 L/min, was tested on a battery pack consisting of 36 prismatic battery cells in a thermally isolated chamber, subjected to initial temperatures of 50.0°C, 60.0°C, and 69.5°C. To assess the thermal behavior, 25 thermocouples were strategically positioned on the battery surface, and inlet coolant temperature was monitored via an additional thermocouple. An exponential cooling response was observed across all temperature cases, with maximum temperature difference between the hottest and coldest cells reaching 7.6
Darvish, HosseinCarlucci, Antonio PaoloFicarella, AntonioLaforgia, Domenico
Long-haul truck drivers are mandated to take off-duty time of 10 h (a.k.a. hoteling) before driving. During the hotel phase, drivers spend time inside their trucks (sleeper cabs) and idle the internal combustion engine for comfort by utilizing the heating, ventilation, air-conditioning (HVAC), and other onboard appliances. For one 10-h period, the average cost is about $40, which can be a lot when considering a million truck drivers idling overnight. SuperTruck II is a 48 V mild-hybrid heavy-duty truck with auxiliary loads powered by an onboard battery pack. An optimal control algorithm is developed to charge the battery pack during the drive phase up to a certain state-of-charge (SOC) level, sufficient to meet the power demands of the auxiliary load during the hotel phase. This article captures the research done to predict energy consumption in a mild-hybrid heavy-duty sleeper truck during hoteling. Physics-based gray box models are developed to estimate the power consumption of an
Khuntia, SatvikHanif, AtharAhmed, QadeerLahti, JohnJorgensen, Iner
TOC
Tobolski, Sue
Heavy-duty trucks idling during the hotel period consume millions of gallons of diesel/fuel a year, negatively impacting the economy and environment. To avoid engine idling during the hotel period, the heating, ventilation, and air-conditioning (HVAC) and auxiliary loads are supplied by a 48 V onboard battery pack. The onboard battery pack is charged during the drive phase of a composite drive cycle, which comprises both drive and hotel phases, using the transmission-mounted electric machine (EM) and battery system. This is accomplished by recapturing energy from the wheels and supplementing it with energy from the engine when wheel energy alone is insufficient to achieve the desired battery state of charge (SOC). This onboard battery pack is charged using the transmission-mounted EM and battery system during the drive phase of a composite drive cycle (i.e., drive phase and hotel phase). This is achieved by recapturing wheel energy and energy from the engine when the wheel energy is
Huang, YingHanif, AtharAhmed, Qadeer
The objective of the current study is to systematically evaluate the battery thermal runaway heat release rate through chemical kinetics and then study its effect on battery module and pack level. For this purpose, a chemistry solver has been developed, capable of simultaneously solving the thermal runaway kinetics in multiple battery cells with the cell-specific chemistry model and battery active material compositions. This developed solid body chemistry (SBC) solver assumes a homogeneous system in the specified geometrical selection. A 3D representation can be achieved by setting up multiple solver selections in one solid domain (battery cell) as the SBC solver is capable of handling multiple selections, chemistry models, and battery active material compositions. Further, the SBC solver is fully integrated in a commercial three-dimensional computational fluid dynamics (3D-CFD) code. Thus, enabling to simulate the real-life thermal runaway applications covering the battery module and
Chittipotula, ThirumaleshaEder, LucasUhl, Thomas
Items per page:
1 – 50 of 1137