Browse Topic: Quantum computing
ABSTRACT We present the results of an exploratory investigation of applying a hybrid quantum-classical architecture to an off-road vehicle mobility problem, namely the generation of go/no-go maps posed as a machine learning problem. The premise of this work rests on two observations. First, quantum computing allows in principle for algorithms that provide a speedup over the best known classical counterparts. However, as it is to be expected of such novel and complex tools (both hardware and algorithmic) at this early developmental stage, current quantum algorithms do not always perform well on real-world problems. Second, complex physics-based vehicle and terramechanics models and simulations, currently advocated for high-fidelity high-accuracy ground vehicle–terrain interaction analyses, pose significant computational burden, especially when applied to mobility studies which may require numerous simulation runs. We describe the Quantum-Assisted Helmholtz Machine formulation, suitable
Data encryption is an essential part of keeping patient information private. It’s also remained relatively unchanged in recent decades — a rarity for anything in the cybersecurity space. The dawn of quantum computing will change that
Advanced two-dimensional materials discovered in the last two decades are now being produced at scale and are contributing to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprising a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for aerospace engineering. The goals of reducing greenhouse gas emissions and creating a world that achieves net-zero emissions have prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. These aspects have
When it comes to quantum technology, niobium is making a comeback. For the past 15 years, niobium has been sitting on the bench after experiencing a few mediocre at-bats as a core qubit material
Quantum computing and its applications are emerging rapidly, driving excitement and extensive interest across all industry sectors, from finance to pharmaceuticals. The automotive industry is no different. Quantum computing can bring significant advantages to the way we commute, whether through the development of new materials and catalysts using quantum chemistry or improved route optimization. Quantum computing may be as important as the invention of driverless vehicles. Emergence of Quantum Computing Technologies in Automotive Applications: Opportunities and Future Use Cases attempts to explain quantum technology and its various advantages for the automotive industry. While many of the applications presented are still nascent, they may become mainstream in a decade or so. Click here to access the full SAE EDGETM Research Report portfolio
New research in quantum computing at Sandia National Laboratories is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest
To begin with let us look at regular digital computers, or what physicists call a classical computer. This performs data processing tasks by manipulating bits; each bit can have a value of one or zero. A quantum implementation of a computer manipulates quantum bits (qubits). Qubits can have a value of one, zero or both simultaneously. When the bit is simultaneously a one and a zero, (yes one and zero at the same time, not oscillating quickly between two states) the bit is said to be in a state of superposition. Superposition is one of two key phenomena in quantum computing, the other being entanglement as they allow us to quickly crack encryption, make artificial intelligence (AI) faster, or do things like simultaneously build models for weather and the stock market
MIT researchers have developed a quantum computing architecture that aims to enable extensible, high-fidelity communication between superconducting quantum processors
To begin with let us look at regular digital computers, or what physicists call a classical computer. This performs data processing tasks by manipulating bits; each bit can have a value of one or zero. A quantum implementation of a computer manipulates quantum bits (qubits). Qubits can have a value of one, zero or both simultaneously. When the bit is simultaneously a one and a zero, (yes one and zero at the same time, not oscillating quickly between two states) the bit is said to be in a state of superposition. Superposition is one of two key phenomena in quantum computing, the other being entanglement as they allow us to quickly crack encryption, make artificial intelligence (AI) faster, or do things like simultaneously build models for weather and the stock market. In this article we will focus on superposition. To understand this, we need to examine the properties of an electron, especially how electrons behave in the presence of electromagnetic (EM) fields and how this is used
A new method was developed to passivate defects in next-generation optical materials. The new photocatalytic reaction enables the integration of high-quality, optically active, atomically thin material in a variety of applications such as electronics, electro-catalysts, memory, and quantum computing
Superconductors — materials that conduct electricity without resistance — provide a macroscopic glimpse into quantum phenomena, which are usually observable only at the atomic level. Superconductors are found in medical imaging, quantum computers, and cameras used with telescopes. But often, they are expensive to manufacture and prone to error from environmental noise
While beam steering systems have been used for years for applications such as imaging, display, and optical trapping, they require bulky mechanical mirrors and are overly sensitive to vibrations. Compact optical phased arrays (OPAs), which change the angle of an optical beam by changing the beam’s phase profile, are a promising new technology for many emerging applications. These include ultra-small solid-state LiDAR on autonomous vehicles, much smaller and lighter AR/VR displays, large-scale trapped-ion quantum computers to address ion qubits, and optogenetics, an emerging research field that uses light and genetic engineering to study the brain
Quantum computing has seen increased attention over the past decade since these computers, which function according to the principles of quantum physics, have enormous potential. These computers may one day be able to solve certain problems faster than classical computers, since they use entangled quantum states in which various bits of information overlap at a certain point in time. This means that in the future, quantum computers will be able to efficiently solve problems that classical computers cannot solve within a reasonable timeframe
Quantum computing is considered the “next big thing” when it comes to solving computational problems impossible to tackle using conventional computers. However, a major concern is that quantum computers could be used to crack current cryptographic schemes designed to withstand traditional cyberattacks. This threat also impacts future automated vehicles as they become embedded in a vehicle-to-everything (V2X) ecosystem. In this scenario, encrypted data is transmitted between a complex network of cloud-based data servers, vehicle-based data servers, and vehicle sensors and controllers. While the vehicle hardware ages, the software enabling V2X interactions will be updated multiple times. It is essential to make the V2X ecosystem quantum-safe through use of “post-quantum cryptography” as well other applicable quantum technologies. This SAE EDGE™ Research Report considers the following three areas to be unsettled questions in the V2X ecosystem: How soon will quantum computing pose a threat
Princeton University researchers have built a device in which a single electron can pass its quantum information to a particle of light. The particle of light, or photon, then acts as a messenger to carry the information to other electrons, creating connections that form the circuits of a quantum computer
Thermal blocking filters find wide use in cryogenic applications ranging from quantum computing to ultra-low-noise detectors. They can be used to provide the environmental isolation between cooled devices and the warmer temperature supporting bias and readout circuitry. In particular, they are effective in rejecting thermal radiation, limiting radio frequency interference, and providing a convenient means of heat sinking or realizing a vacuum feedthrough for signal lines
Researchers at the National Institute of Standards and Technology (NIST), working in collaboration with the Naval Research Laboratory, have found that a particular species of quantum dots that weren't commonly thought to blink, do. Although the blinks are short — on the order of nanoseconds to milliseconds — even brief fluctuations can result in efficiency losses that could cause trouble for using quantum dots to generate photons that move information around inside a quantum computer or between nodes of a future high-security internet based on quantum telecommunications
Researchers are edging toward the creation of new optical technologies using "nanostructured metamaterials" capable of ultra-efficient transmission of light, with potential applications including advanced solar cells and quantum computing
Ateam of physicists headed by Dr. Vinod M. Menon, who is a member of The City University of New York Photonics Initiative and teaches at Queens College, has discovered a new method to manipulate light that could eventually result in more efficient solar cells, super bright LEDs, ultra-high sensitive sensors, and single photon sources necessary for quantum communication protocols and quantum computers
This paper explores the problem of complex safety/security critical software Validation and Verification (V&V). Current methods of V&V, which certify that the software is fit for use, require a significant amount of touch labor - future complex software developments such as NextGen Air Traffic Control will face cost hurdles so high that it may not be deployable. We will take the current V&V technology beyond formal methods (the current state of the art), reducing the V&V problem to an NP-Hard optimization problem solvable by emerging Adiabatic Quantum Computing (AQC) hardware and processing methods. The Quantum V&V (QVV) approach can go beyond software V&V, and can span the entire complex system
A silicon photomultiplier (SPM) is a new type of semiconductor detector that has the potential to replace the photomultiplier tube (PMT) detector in many applications. In common with a PMT detector, the output of an SPM is an easily detectable current pulse for each detected photon and can be used in both photon counting mode and as an analogue (photocurrent) detector. However, the SPM also has a distinct advantage over PMT detectors. The photon-induced current pulse from a PMT varies greatly from photon to photon, due to the statistics of the PMT multiplication process (excess noise). In contrast, the current pulse from an SPM is identical from photon to photon. This gives the SPM a distinct advantage in photon counting applications as it allows the associated electronics to be greatly simplified. Identical pulses also mean that the SPM can resolve the number of photons in weak optical pulses, so-called photon number resolution. This is critical in a number of applications including
Units of superconducting circuitry that exploit the concept of the single-Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom
Fast algorithms and the first complete and efficient circuits for implementing two quantum wavelet transforms have been developed in theory. The significance of this development within the overall development of quantum computing is the following: In principle, the algorithms and circuits constitute instructions for implementing the transforms by use of primitive quantum gates; the circuits in this case are analogous to circuit-diagram-level descriptions of classical electronic circuits that perform logic functions
Items per page:
50
1 – 45 of 45