Browse Topic: Propellers and rotors
This study presents empirical modifications of Blade Element Momentum Theory (BEMT) to improve rotor performance prediction for open rotors in hovering conditions. The empirical adjustments were made to the inflow ratio, factoring in the real rotor wake area and estimated induced power losses. A comparison between experimental data and two analytical models, one using an empirical inflow formula and the other a theoretical formula (classical BEMT), was conducted for two rotors. The empirical inflow model demonstrated superior accuracy in predicting thrust and torque. These modifications are applied to the inflow ratio by accounting for the actual rotor wake area and estimated induced power losses. The findings highlight the potential for more accurate performance prediction through the integration of empirical data into theoretical frameworks.
From humble Chevrolet Bolts to six-figure Lucid Airs, every EV can reverse its electric motors to slow the vehicle while harvesting energy for the battery, the efficient tag-team process known as regenerative braking. Today's EVs do this so well that traditional friction brakes, which clamp onto a spinning wheel rotor or drum, can seem an afterthought. Witness Volkswagen's decision to equip its ID.4 with old-fashioned rear drum brakes, with VW claiming drums reduce EV rolling resistance and offer superior performance after long periods of disuse.
Monitoring the rotor temperature of drive machines is crucial for the safety and performance of electric vehicles. However, due to the complex operating conditions of electric vehicles, the thermal parameters of vehicular induction machines (IMs) vary significantly and are difficult to identify accurately. This article first establishes a concise but effective thermal network for IMs and analyzes the influencing factors of thermal parameters. Then, a parameter identification network (PIN) with multiple parallel branches is constructed to learn the mapping relationship between electromechanical variables and thermal parameters. Afterward, temperature datasets for network training are built through bench testing. Finally, the effectiveness of identified parameters for rotor temperature estimation application is verified, demonstrating improved interpretability, generalization ability, and accuracy compared to an end-to-end neural network.
The inductance parameter is important for the flux regulation performance of the hybrid excitation motor, and the axial structure leads to the change in the inductance parameter of the axial-radial hybrid excitation motor (ARHEM). To clarify the inductance characteristic of the ARHEM with different winding construction and the mutual coupling effect between the axial excitation and permanent magnet excitation on the inductance. Firstly, the structure of the ARHEM is presented. Secondly, the self and mutual inductance characteristics of ARHEM are analyzed using the winding function method. Then, the influence of the axial excitation structure on the armature reaction field and saliency ratio of ARHEM. On this basis, the mechanism of the mutual coupling, between the axial excitation and permanent magnet field under different excitation currents on the main air gap magnetic field, and the inductance of ARHEM with fractional slot are revealed.
This document provides the specifications of horizontal hard-bearing balancing machines, which make such machines suitable for gas turbine rotor balancing.
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor. High rotational speed of rotor introduces centrifugal loading on the magnets which can result in multiple failure modes such as the debonding of the magnet, and high radial
Additive manufacturing (AM) is currently the most sought-after production process for any complex shaped geometries commonly encountered in Aerospace Industries. Although, several technologies of AM do exits, the most popular one is the Direct Metal Laser Sintering (DMLS) owing to its high versatility in terms of precision of geometries of components and guarantee of highest levels of reduction in production time. Further, metallic component of any complex shape such as Gas Turbine Blades can also be developed by this technique. In the light of the above, the present work focuses on development of iron silicon carbide (Fe-SiC) complex part for ball screw assembly using DMLS technique. The optimized process parameters, hardness and wear resistance of the developed iron-SiC composite will be reported. Further, since the material chosen is a metallic composite one, the effect of SiC on the thermal stresses generated during the DMLS processing of Fe-SiC composite will also be discussed. A
CFM International Cincinnati, OH 513-552-3272
During validation of a new brake lining on a light duty truck application, the brake rotor exhibited high lateral runout on the friction surfaces. As the engineering team investigated the issue more carefully, they noticed the rotor lateral runout was also changing from revolution to revolution. The team ran testing on multiple light pickup vehicles and found differences in the amount of rotor runout variation. The rotor lateral runout and runout variation can cause vibration and pulsation of the passenger seat and the steering wheel. To identify the root cause of the high level of rotor lateral runout and runout variation, measurement data was collected and analyzed from the vehicle level test. During further analysis, some of the runout variation corresponded to a wheel bearing internal frequency. The bearing internal geometry was studied to confirm what factors affected the runout variation. The team also conducted testing to see how the mating components may have affected the wheel
Brake squeal is a common phenomenon across all types of vehicles. It becomes prominent in the absence of other noise sources, as in the case of electric vehicles. Earlier simulation attempts date back to late nineties and early 2000s. Identification of unstable modes of the coupled system of brake rotor and pads, and occasionally some caliper components, was the primary goal. Simulating the rotation of the rotor along with squeezing of the pads was attempted in a multi-body dynamics tools with flexible representation of rotor and pads. Though this gave some insights into the dynamics of stopping mechanism, squeal required capturing the nonlinearities of the contact in a more rigorous sense. Also, efforts were made to capture noise from vibrations using boundary- and finite- element methods [1]. In this attempt at digitalizing a brake dynamometer, the author used a nonlinear implicit solver to mimic the dynamics and transient vibro-acoustic solver to convert transient vibrations to
Electrification is seen as having an important role to play in the fossil-free aviation of tomorrow. But the more energy-efficient an electric aircraft is, the noisier its propellers get. Now, researchers at Chalmers University of Technology have developed a propeller design optimization method that paves the way for quiet, efficient electric aviation.
Items per page:
50
1 – 50 of 833