Browse Topic: Aircraft tails

Items (102)
As part of a larger research program on behalf of Transport Canada and the Federal Aviation Administration, APS Aviation Inc. conducted a series of representative scaled tests in the National Research Council Canada 3 m × 6 m Icing Wind Tunnel evaluating contaminated fluid flow-off from a common research model vertical stabilizer. The goal of this work is to help understand the impact of de/anti-icing fluids with and without precipitation on the performance of vertical surfaces, using existing allowance times that were developed for horizontal surfaces to guide the test exposure times. The data include a qualitative analysis of the appearance of the surfaces and a quantitative evaluation using aerodynamic data from an external balance and manual measurements of the fluid thicknesses on the model surface. The model was evaluated in a clean and dry configuration to establish the baseline aerodynamic performance, with sandpaper roughness testing used to as a substitute for fluids in order
Ruggi, MarcoClark, Catherine
The term “3 inch ice shapes” has assumed numerous definitions throughout the years. At times it has been used to generally characterize large glaze ice accretions on the major aerodynamic surfaces (wing, horizontal stabilizer, vertical stabilizer) for evaluating aerodynamic performance and handling qualities after a prolonged icing encounter. It has also been used as a more direct criterion while determining or enforcing sectional ice shape characteristics such as the maximum pinnacle height. It is the authors’ observation that over the years, the interpretation and application of this term has evolved and is now broadly misunderstood. Compounding the situation is, at present, a seemingly contradictory set of guidance among (and even within) the various international regulatory agencies resulting in an ambiguous set of expectations for design and certification specialists. The focus of this paper is to provide a more complete and accurate historical accounting of “3 inch ice shapes
Leopold, DaveMalone, AdamBosetti, CrisMacomber, JohnSlim, Rami
Innovative carbon nanotube (CNT) electrothermal heating technology for ice protection systems is one of the alternatives under development that shall contribute to more efficient and sustainable aircraft. CNT heater technology allows for more rapid heat up rates over legacy metallic electrothermal heaters that utilize resistance wires or metallic foils. This more rapid heat up rate can lead to more energy efficient electrothermal ice protection system designs and is being studied to determine how much the rapid heat up properties of CNT can lead to a minimization of residual ice build-up aft of the heated area. Due to the inherent redundancy of CNT material used, leads to a very robust and damage tolerant heating element. To mature this technology to prepare to implement CNT on an in-service aircraft platform, a multi-staged flight testing effort to prove out the technology on an actual aircraft and in a relevant environment is mandatory. Recently a major milestone was achieved after
Hein, BrandonBotura, GaldemirHamman, MatthewSlane, Casey
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°. Testing with fluids and precipitation
Clark, CatherineRuggi, Marco
This document describes a practical system for a user to determine observer-to-aircraft distances. These observer-to-aircraft distances can be either closest point of approach (CPA) distances during field measurements or overhead distances during acoustic certification tests. The system uses a digital camera to record an image of the subject aircraft. A method of using commercial software to obtain the distance from such an image is presented. Potential issues which may affect accuracy are discussed
A-21 Aircraft Noise Measurement Aviation Emission Modeling
This SAE Aerospace Recommended Practice (ARP) provides processes for achieving the required cleanliness standards during the fabrication, assembly, and functional test of aircraft hydraulic systems. It covers exclusion and removal of solid and liquid contaminants from tubing during manufacture and final assembly, flushing of the installed system, and final checks to ensure cleanliness requirements are met
A-6A2 Military Aircraft Committee
This SAE Aerospace Recommended Practice (ARP) describes the recommended performance levels for equipment located on the aircraft exterior which produces radiant energy which will provide desired information when viewed with NVIS goggles. These performance intensities, normally stated in candelas for visible light, are modified to consider the goggle spectral response range. Where necessary, location of the equipment on the airplane is specified. The spectral emission characteristics may or may not include visible light. Whether or not visible energy is emitted, this document will refer to these items of equipment as "lights
A-20B Exterior Lighting Committee
This SAE Aerospace Information Report (AIR) relates considerations for design test procedures and test data evaluation for qualification of tire spray deflection devices
A-5 Aerospace Landing Gear Systems Committee
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available. NOTES 1 For some aircraft, the description is incomplete, due to
A-5B Gears, Struts and Couplings Committee
The aerospace sector is challenged to produce airplanes more efficiently and resiliently in the future. This leads to an increasing demand for improving productivity and flexibility as well as providing solutions for sustainable developments. A bottleneck in production is the machining of large-scale components. Apart from the machining tasks, non-productive operations like fixture adjustment, component handling, referencing and localization are performed within the machining station and can constitute up to 50% of the overall workload. In the UniFix project, Fraunhofer IFAM is participating in the development of a mobile fixture system for large-scale aircraft components, like vertical tail plane and landing flap components of the single aisle aircrafts. By installing components into a mobile holding fixture with an according referencing scheme, a flow line can be established that is composed of specialized workstations discharging the machining station from non-productive processes
Brillinger, ChristophKallipalayam Murugesan, Satheesh KumarMoeller, ChristianBoehlmann, ChristianHintze, WolfgangNiermann, Dirk
This SAE Aerospace Recommended Practice (ARP) is intended to cover all external lights on the tanker and fixed wing receiver airplanes used to accomplish aerial refueling. This ARP describes lights used for two basic types of aerial refueling: the probe and drogue, and the boom/receptacle method
A-20B Exterior Lighting Committee
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions
A-5B Gears, Struts and Couplings Committee
A modular vertical takeoff and landing (VTOL) unmanned aerial system (UAS) is made up of multiple unmanned aerial vehicle (UAV) modules with uniform wingtips for tip-to-tip docking. Each UAV has twin booms with front and rear propellers and an empennage with a downward-mounted vertical rudder. All the propellers are tiltable for VTOL and the front ones are stowable for cruise efficiency
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate
A-5B Gears, Struts and Couplings Committee
The Inconel 718 is an alloy based on nickel of high thermal and mechanical resistance, which allows its wide application in the aerospace industry, being generally implemented in aircraft tail cone and engine components. On the other hand, these features become a recurring problem when the machining of this material is performed. For example, in the drilling process of this superalloy, the cutting tools used exhibit excessive wear due to the high temperature and pressure at the cutting edge. However, there are numerous parameters that can influence the cutting tool life, and when analyzed and well defined, determine the types of modifications needed to enable less wear, and consequently an increase of its useful life in service. Given this context and knowing that the study of tool life in the Inconel 718 drilling process is extremely relevant in the aerospace sector, this paper presents a wear study in order to evaluate the behavior of different types of cutting tools used to drill
Barros, Pedro CabegiBarbosa, Gustavo FrancoVentura, Carlos Eiji HirataSantos, Gustavo Roberto
In efforts to increase the accuracy and reliability of altimetry, speed measurement and other aspects of air data, a great deal of attention and money have been expended on new and refined pressure transducing and computing systems and on the standards by which they are calibrated. So much progress has been made in this that the limiting factor is, or may soon be, the sensing and transmitting in the aircraft of the pressures to be transduced. Until the appearance of References 1-13 and 18 there was little guidance available on the maintenance of pitot and static systems. This report presents what information is available, suggests limits, and lists the principal original papers on the subject
A-4 Aircraft Instruments Committee
This document establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Types II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer's recommendations
G-12M Methods Committee
A CFD simulation methodology for the inclusion of the post-impact trajectories of splashing/bouncing Supercooled Large Droplets (SLDs) and film detachment is introduced and validated. Several scenarios are tested to demonstrate how different parameters affect the simulations. Including re-injecting droplet flows due to splashing/bouncing and film detachment has a significant effect on the accuracy of the validations shown in the article. Validation results demonstrate very good agreement with the experimental data. This approach is then applied to a full-scale twin-engine turboprop to compute water impingement on the wings and the empennage. Since the performance characteristics of twin-engine commercial turboprops are such that they operate most efficiently at flight levels where SLD encounters may occur, the goal of this article is to establish a 3D computational methodology to eventually enable a complete study of the impact of FAR 25 Appendix O on the IPS requirements for this
Fouladi, HabibollahBaruzzi, Guido S.Nilamdeen, ShezadOzcer, Isik
This document establishes the minimum requirements for ground based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer's recommendations
G-12M Methods Committee
This SAE Aerospace Recommended Practice (ARP) establishes requirements for the function, characteristics, and installation of an aircraft On Board Weight and Balance System (OBWBS) for use on civil transport aircraft. This document is not intended to specify design methods, mechanisms, or material to accomplish the requirements set forth
AGE-2 Air Cargo
This document covers red and white anticollision lights using flashtubes as the light source
A-20B Exterior Lighting Committee
This document covers the recommended lighting performance and design criteria for: a Left Forward Navigation Position Lights (Red) b Right Forward Navigation Position Lights (Green) c Rear Navigation Position Lights (White) d Anticollision Lights (1) Red Flashing Lights Top and Bottom Fuselage (2) White Flashing Strobe Lights Wing Tips and/or Tail (3) Red Flashing Beacon Light on Top of Vertical Tail
A-20B Exterior Lighting Committee
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints. Commonality amongst the robots was desired to allow each to effectively address any of the commodities which range from small fairings to very large
Mir, RyanDeVlieg, Russell
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes
Landau, Carl
This SAE Aerospace Recommended Practice (ARP) contains the general requirements and test procedures for Dual Mode (NVIS Friendly visible and Covert) exterior lighting for most rotorcraft and fixed wing aircraft and could be applicable to ground vehicles that desire a Dual Mode lighting system
A-20B Exterior Lighting Committee
Conventional aircraft typically include propulsion engines that are under the wing or tail surfaces. Each propulsion engine system includes an engine housed in a nacelle with an inlet and a nozzle system. Primary component noise sources from the engine system include the noise associated with the fan, compressor, turbine, and combustor, and the noise associated with the high-velocity jet exhaust flow. There are many methods for reducing the various noise sources from the aircraft, including those noise sources from the engine system. One method includes the use of the aircraft itself as an acoustic shield for the noise sources associated with the engines. This approach requires a new configuration of aircraft with the engines installed on the upper surface of the wing or fuselage, or an aircraft that has a hybrid wing and fuselage. Of the engine noise sources, the jet exhaust is a particular challenge due to the fact that the noise sources are in the exhaust flow itself, and therefore
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity Analyses Icing Wind Tunnel Tests Flight Tests Computational Fluid Dynamics and other Numerical Analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 NOTE: This document is applicable for fluids that are “qualified” to (i.e., have passed) the tests and other standards prescribed in AMS1424 or AMS1428 and are properly used in accordance with ARP4737. NOTE: There are topics of potential interest not discussed in this
G-12ADF Aircraft Deicing Fluids
In comparison with traditional aircraft design, the configuration design phase of a hybrid buoyant aircraft is quite complex due to the augmentation of aerostatic and aerodynamic lift. The first step in assessing the optimal configuration for such aircraft is to approach the design in a number of different ways with different shapes of hull and diversed empennage arrangements. Concept selection methods like Pugh concept selection charts can assist to rank the population of different concepts of such aircraft. In the present work, an effort was done to explore the potential usage of Pugh's method in a comprehensive manner and to establish a basis for choosing a particular design concept. Driving factors of such design concepts were reviewed alongwith the selection of figure of merits, which were further evaluated by taking Megalifter as a reference with which all other configurations under consideration were compared. The initial set of concept generation was obtained on some initial
ul Haque, AnwarAsrar, WaqarSulaeman, ErwinOmar, AshrafAli, Jaffar Syed Mohamed
The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests were performed in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS 25.1419 and CS25.21g. Prior to the flight test campaign, extensive engineering analyses, laboratory tests and system
Toulouse, Marie-LaureLewis, Richard
In today's assembly of large complex Carbon Fiber Reinforced Plastics (CFRP) components, e.g. vertical tail planes (VTP) of modern passenger aircrafts, liquid resin-based materials are used for several applications. Commonly, liquid resin-based materials are used to close gaps between the CFRP single parts during assembly (shimming) or to smoothen outer surfaces to fulfill aerodynamic requirements (aerodynamic sealing). Curing times of standard resin-based materials vary between eight to twelve hours at room temperature under normal shopfloor conditions regarding air humidity. In running aircraft production such long curing times are definitely waste in the sense of lead time. By heating these resin-based materials the common curing time can drastically be reduced down to two hours. By using heated air - instead of e.g. heating lamps - the curing process can reliably be controlled, without any risk of overheating and destroying the sealant or shim material. Both, the heated air
Gessenharter, AlexanderVan Koppen, BjornGraf Bethusy-Huc, Marc-Philipp
The performance enhancement of a vertical tail provided by aerodynamic flow control could allow for the size of the tail to be reduced while maintaining similar control authority. Decreasing tail size would create a reduction in weight, drag, and fuel costs of the airplane. The application of synthetic jet actuators on improving the performance of the vertical tail was investigated by conducting experiments on 1/9th and 1/19th scale wind tunnel models (relative to a Boeing 767 tail) at Reynolds numbers of 700,000 and 350,000, respectively. Finite-span synthetic jets were placed slightly upstream of the rudder hinge-line in an attempt to reduce or even eliminate the flow separation that commences over the rudder when it was deflected to high angles. Global force measurements on the 1/9th scale model showed that the flow control is capable of increasing side force by a maximum of 0.11 (19%). The momentum coefficient that created this change was relatively small (Cμ = 0.124%). Furthermore
Rathay, NicholasBoucher, MatthewAmitay, MichaelWhalen, Edward
Cost reduction efforts are driving aircraft manufactures to new assembly methods and strategic sourcing approaches. Global challenges, international competitors as well as increasing wages and salaries are leading to higher automation levels. ThyssenKrupp started researching new harmonized solutions for wing box, center wing box, vertical tail plane and horizontal tail plane that in 2007. The first step was to research the available technologies and to define how they can be used together to attend the new requirements of the aircraft industry. In 2009 ThyssenKrupp got the opportunity to apply the achieved results in a real application. One of the major challenges was to decide on the main premises for the assembly concept. Business case studies showed reasonable automation approaches; early investigations for health and safety topics showed up potential issues and detailed 3D concepts gave reliable results during the preliminary design review. The outcome is an automated environment
Brooksiek, MichaelBunke, Joerg
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM. The addition of the large, glaze-horn-type ice shapes did result in an increase in airplane drag coefficient but had little effect on the lift and
Broeren, Andy P.Lee, SamShah, Gautam H.Murphy, Patrick C.
Items per page:
1 – 50 of 102