Standards - SAE Mobilus

SAE standards are internationally recognized as some of the most trusted collections of scientific data to globally optimize the processes, practices, and products that advance technology in our industry and are vital to ensure safety, quality, and reliability. Over 40,000+ current documents available within the aerospace, automotive, and commercial vehicle industries.

Items (50,062)
SCOPE IS UNAVAILABLE.
AE-8C2 Terminating Devices and Tooling Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 4.000 inches (101.60 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for automotive units with the primary drive hypoid gears, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. The information contained within is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). A complete listing of qualification submission requirements and
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 0.015 to 1.5 inches (0.38 to 38 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This document covers bolts and screws made from a corrosion- and heat-resistant, precipitation-hardenable, iron base alloy of the type identified under the Unified Numbering System as UNS S66286.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This SAE Aerospace Standard (AS) establishes the requirements for various types of identification sleeving that will shrink to a predetermined size upon the application of heat after it has been marked using AS23053 sleeves as basis material. This AS does not cover specific carrier configuration.
AE-8D Wire and Cable Committee
SCOPE IS UNAVAILABLE.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers an aluminum alloy in the form of plate from 0.250 to 1.500 inches (6.35 to 38.10 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
The intent of this specification is for the procurement of carbon fiber and fiberglass epoxy prepreg products with 350 °F (177 °C) cure for aerospace applications; therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program must refer to the production quality assurance section (4.3) of this base specification, AMS6891.
AMS P17 Polymer Matrix Composites Committee
This specification establishes the requirements for anodic coatings on aluminum alloys.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers the requirements for a manganese phosphate coating on ferrous alloys.
AMS B Finishes Processes and Fluids Committee
This SAE Standard defines the method for deriving and verifying the peening intensity exerted onto a part surface during shot peening or other surface enhancement processes.
Surface Enhancement Committee
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied) and in gear. For illustrative purposes, some typical transmissions are shown.
Automatic Transmission and Transaxle Committee
This SAE Recommended Practice is derived from the FMVSS 105 vehicle test and applies to two-axle multipurpose passenger vehicles, trucks, and buses with a GVWR above 4540 kg (10000 pounds) equipped with hydraulic service brakes. There are two main test sequences: the Development Test Sequence for generic test conditions when not all information is available or when an assessment of brake output at different inputs is required, and the FMVSS Test Sequence when vehicle parameters for brake pressure as a function of brake pedal input force and vehicle-specific loading and brake distribution are available. The test sequences are derived from the Federal Motor Vehicle Safety Standard 105 (and 121 for optional sections) as single-ended inertia-dynamometer test procedures when using the appropriate brake hardware and test parameters. This recommended practice provides Original Equipment Manufacturers (OEMs), brake and component manufacturers, and aftermarket suppliers with results related to
Truck and Bus Hydraulic Brake Committee
This SAE AIR covers Forced Air technology including: reference material, equipment, safety, operation, and methodology. It is intended to provide pressure and temperature (temps pages 26 & 31) information and minimum safety guidelines regarding use of equipment to remove frozen contaminants related to: i) Forced air ii) Forced air/fluid iii) Deicing fluid
G-12M Methods Committee
This information report covers all known aircraft with respect to deicing operations, especially with regard to OEM pressure and temperature limitations on the airframe. It provides data for airlines/operators on compliance with OEM limits and confirms that OEM limits are not exceeded during deicing operations.
G-12M Methods Committee
This AIR is limited to the testing of an extra-high strength copper alloy and benchmark conductors utilizing the test protocol of AS6324. All samples are 19 strand unilay conductors per AS29606 at 24 or 26 AWG, either nickel or silver coated. At 24 AWG, extra-high strength copper alloy is compared to high strength copper alloy conductors. At 26 AWG, extra-high strength copper alloy is compared to high strength copper alloy and ultrahigh strength copper alloy conductors.
AE-8D Wire and Cable Committee
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Standard covers cold drawn and annealed seamless low-carbon steel pressure tubing intended for use as hydraulic lines and in other applications requiring tubing of a quality suitable for flaring and bending. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Metallic Tubing Committee
This specification covers a titanium alloy in the form of forgings, 6.000 inches (152.40 mm) and under in cross-sectional thickness and forging stock of any size.
AMS G Titanium and Refractory Metals Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification and its supplementary slash specifications establish the requirements for electrodeposition of metals by brush plating.
AMS B Finishes Processes and Fluids Committee
This SAE Aerospace Recommended Practice (ARP) provides general guidelines and procedures for servicing and maintaining oxygen systems. These methods may apply to gaseous, liquid, chemical, and portable oxygen systems. This document is not intended to replace manufacturer or airline maintenance manuals but rather to emphasize the importance of the adherence to such practices and that they be followed. Attention is given to ensure the cleanliness of oxygen systems and components are respected and appropriate practices are followed. This document provides guidance and recommendations, for engineering and maintenance personnel for airlines, modification centers, and third-party maintenance contractors, to be used while performing maintenance on oxygen systems and components. This document is intended as guidance only and may not be cited as a requirement.
A-10 Aircraft Oxygen Equipment Committee
The purpose of this SAE Aerospace Recommended Practice (ARP) is to establish general guidelines for the measurement of static and dynamic characteristic properties of aircraft tires.
A-5C Aircraft Tires Committee
Items per page:
1 – 50 of 50062