Magazine Articles - SAE Mobilus

Items (26,298)
It all started when Owen Kent and Todd Roberts became roommates at the University of California Berkeley. Owen has muscular dystrophy and had recently acquired a robotic arm, which he noticed he was using to do range of motion. Todd had come to Berkeley to study mechanical engineering with a focus on biomechanics, and both were enrolled in Designing for the Human Body, a biomechanics course taught by Mechanical Engineering Professor Grace O’Connell.
One of the biggest goals for companies in the field of artificial intelligence (AI) is developing “agentic” systems. These metaphorical agents can perform tasks without a guiding human hand. This parallels the goals of the emerging urban air mobility industry, which hopes to bring autonomous flying vehicles to cities around the world. One company wants to do both and got a head start with some help from NASA.
Cornell researchers and collaborators have developed a neural implant so small that it can rest on a grain of salt, yet it can wirelessly transmit brain activity data in a living animal for more than a year.
Trying to document how single brain cells participate in networks that govern behavior is a daunting task. Brain probes called Neuropixels, which feature high-density silicon arrays, have enabled scientists to collect electrophysiological data of this nature from a variety of animals. These include fish, reptiles, rodents, and primates, as well as humans.
Current world conflicts have proven that drones are now indispensable tools in modern warfare. Whether for reconnaissance, loitering munitions, or asymmetric tactics that exploit vulnerabilities in conventional defenses, unmanned aerial systems (UAS) are redefining the rules of engagement.
In complete darkness, through smoke, glare and fog, thermal infrared (IR) imaging is indispensable for modern defense and autonomous systems. Enabling autonomous vehicles (AVs) to detect pedestrians or threats at night or providing critical sensing capabilities for unmanned aerial vehicles and counter-UAS operations, thermal imaging has become the essential “eyes” when visible camera systems fail.
In neurology, a quiet crisis has emerged: the supply of specialists can no longer meet the rising demand for diagnostic interpretation.
Researchers are exploring new ways to utilize microwave technology in monitoring and assessing health conditions. The results of experiments conducted with realistic models are promising. Bras that detect breast cancer, leg sleeves that identify blood clots, and a helmet that monitors the effects of radiation therapy offer a glimpse into what future healthcare might look like.
Without reliability and signal integrity, aerospace communications risk severe signal degradation and reduced security, posing risks to both personnel and mission-critical data. These challenges are particularly critical for applications that depend on military aircraft, satellite communications, and unmanned aerial vehicles (UAVs). As global demand for real-time data continues to surge, communication infrastructure requires regular maintenance and upgrades to maintain secure and reliable performance.
EPFL researchers have invented a remarkably small and ultraflexible neurovascular microcatheter. Powered by blood flow, it can safely navigate the most intricately branched arteries in a matter of seconds.
When Thierry Piéton stepped into the role of executive vice president and chief financial officer of Medtronic earlier this year, he entered one of the largest and most complex organizations in the medical technology industry. Yet, despite that complexity and the company’s recent years of uneven performance, Piéton says he came in with conviction. Medtronic, in his view, is sitting on the edge of a long-awaited inflection point.
Researchers have pioneered a 3D printing method that grows metals and ceramics inside a water-based gel, resulting in exceptionally dense, yet intricate constructions for next-generation biomedical technologies.
Since the advent of laser-based imaging techniques in the early 2000s, image acquisition has faced a fundamental challenge: the imaging speed and signal averaging was directly tied to the firing rate of the laser. Because a minimum of one laser pulse generates a single data point, traditional flashlamp-based lasers operating at relatively low repetition rates were constrained in their ability to capture fine spatial or temporal detail quickly. For applications requiring real-time analysis or high-resolution mapping, these limitations often reduced the practicality of otherwise powerful imaging technologies.
MD&M West, an MD&M Event February 3–5, 2026 Anaheim Convention Center – Anaheim, CA
Endoscopic imaging system development requires coordination between various engineering disciplines, especially for optical illumination and imaging engines, particularly when adding fluorescence imaging capabilities. The optical illumination and imaging engines set the foundation for building intuitive and effective imaging products around and become even more critical when adding fluorescence imaging (FI) capabilities to user needs.
High-power fiber lasers have become increasingly indispensable tools in automotive manufacturing over the past two decades. They are now widely deployed in welding and brazing applications for body-in-white, powertrains, engine components, and more.
Engineers have developed a next-generation wearable system that enables people to control machines using everyday gestures — even while running, riding in a car, or floating on turbulent ocean waves.
Bioelectronics, such as implantable health monitors or devices that stimulate brain cells, are not as soft as the surrounding tissues due to their metal electronic circuits. A team of scientists has developed a soft polymer hydrogel that can conduct electricity as well as metal can. As the material is both flexible and soft, it is more compatible with sensitive tissues. This finding has the potential for a large number of applications, for example, in biocompatible sensors and in wound healing.
EPFL researchers have engineered a fiber-based electronic sensor that remains functional even when stretched to over 10 times its original length. The device holds promise for smart textiles, physical rehabilitation devices, and soft robotics.
Spinoff is NASA’s annual publication featuring successfully commercialized NASA technology. This commercialization has contributed to the development of products and services in the fields of health and medicine, consumer goods, transportation, public safety, computer technology, and environmental resources.
The U.S. Food and Drug Administration (FDA) has taken a substantial step in its digital modernization strategy with the deployment of agentic artificial intelligence capabilities across all agency employee groups. The move represents an expansion of the agency’s internal AI tools, intended to streamline complex, multi-step processes that support regulatory science, product review, and compliance activities. The deployment strengthens the FDA’s ongoing effort to embed structured, secure, and transparent AI systems into daily workflows, building on the rapid adoption of the LLM-based tool Elsa earlier this year.
University of Texas at Dallas researchers have developed biosensor technology that when combined with artificial intelligence (AI) shows promise for detecting lung cancer through breath analysis.
Researchers combined mussel adhesive protein with decellularized extracellular matrix (dECM) to develop a composite hemostatic sponge that offers both strong tissue adhesion and biocompatible biodegradability.
Researchers from Harbin Institute of Technology and their collaborators have developed a multifunctional polyelectrolyte hydrogel reinforced with aramid nanofibers (ANFs) and MXene nanosheets, achieving outstanding performance in absorption-dominated electromagnetic interference (EMI) shielding and wearable sensing. This innovative hydrogel addresses the long-standing challenge of balancing electrical conductivity and effective EMI absorption in flexible electronic materials. The research was published in the journal Nano-Micro Letters. 1
A low-cost, portable biosensor can quickly identify a protein whose altered levels are associated with psychiatric disorders, such as depression, schizophrenia, and bipolar disorder. When it becomes commercially available in the future, it may contribute to early detection, which is essential for treating and monitoring patients’ clinical conditions.
Augustine's Law predicts “In the year 2054, the entire defense budget of the United States will purchase just one aircraft. This aircraft will have to be shared by the Air Force and Navy three days each per week except for leap year, when it will be made available to the Marines for the extra day.” While the world is not on course for the $800 billion aircraft as Augustine predicted, the aerospace & defense industry must take steps to bring new technology to the battlefield without the $800 billion price tag. The development of robotic aircraft or drones is one way to deliver new capability faster for less cost.
Modern warfare is defined as much by data dominance as by maneuver. From satellite-based intelligence, surveillance, and reconnaissance (ISR) platforms to dismounted soldiers' handheld radios, operational success depends on the ability to move, process, and act on digital information in real time. Yet this dependence introduces a critical vulnerability: as the force becomes more data-centric, it becomes more susceptible to disconnection, jamming, and cyber denial. In disconnected, intermittent, and limited (DIL) environments - where communications are degraded by terrain, adversarial interference, or limited infrastructure - traditional network architectures falter. Centralized command nodes and linear data pipelines cannot sustain the agility or resilience required at the tactical edge. The solution is a new design paradigm - one that integrates ruggedized hardware, edge computing, artificial intelligence (AI), and hybrid tactical-cloud architectures into a distributed, adaptive
Winners of the 13th edition of the Altair Enlighten Awards, presented in association with the Center for Automotive Research, were recognized during a ceremony at the CAR Management Briefing Seminars in Detroit. The awards not only acknowledged the automotive industry's best initiatives to reduce vehicle weight and meet emissions targets, but also considered other parameters such as cost reduction, part count reduction and applicability to other vehicle programs. “Starting in the 2000s, the automotive industry wasn't really that interested in optimization. Weight was an outcome of achieving performance. Seeing the rise of these digital technologies over two decades has been such a thrill,” Royston Jones, CTO of Altair Product Design and senior VP for automotive, said to kick off the event. “I'd say now we're really through the gate, particularly over the last five years where globally there's such pressure to develop products quickly. AI has really helped with technology such as
Gehm, Ryan
A look at E/E complexity at the so-called endpoints, where microcontrollers play a crucial role. Autonomous driving is often seen as just the tip of the iceberg when it comes to public perception of how artificial intelligence has been implemented in vehicles. However, this perspective often overshadows a much deeper, less visible transformation: AI's integration into the vehicle's E/E (Electrical/Electronic) architecture. This complex and intricate system encompasses far more than the capabilities for autonomous driving. It includes sensors that collect data, microcontrollers that process data in real-time and actuators that control safety-critical automotive functions.
Baumann, FlorianFoucher, Yoann
Winners of the 13th edition of the Altair Enlighten Awards, presented in association with the Center for Automotive Research, were recognized during a ceremony at the CAR Management Briefing Seminars in Detroit. The awards not only acknowledged the automotive and commercial vehicle industries' best initiatives to reduce vehicle weight and meet emissions targets, but also considered other parameters such as cost reduction, part count reduction and applicability to other vehicle programs. “Starting in the 2000s, the automotive industry wasn't really that interested in optimization. Weight was an outcome of achieving performance. Seeing the rise of these digital technologies over two decades has been such a thrill,” Royston Jones, CTO of Altair Product Design and senior VP for automotive, said to kick off the event. “I'd say now we're really through the gate, particularly over the last five years where globally there's such pressure to develop products quickly. AI has really helped with
Gehm, Ryan
Simulation has become mission-critical for ADAS development. Model-based systems engineering can integrate modeling and simulation from the start of the design process. Advanced Driver Assistance Systems (ADAS) are transforming vehicle safety, acting as the bridge between conventional driving and full autonomy. From adaptive cruise control to emergency braking and blind-spot detection, these technologies rely on a dense network of radar sensors, antennas, electronic control units and software. What unites them is the need for precise functionality under complex real-world situations. Achieving full reliability requires more than testing on the road; it demands a virtual approach grounded in simulation. Simulation has become mission-critical for ADAS development. As new vehicles integrate dozens of sensors into tightly constrained spaces, even subtle design decisions can affect system performance. Radar solutions, in particular, present unique challenges, especially as vehicle surfaces
Eichler, Jan
Perception radar company Arbe was at IAA Mobility in Munich this year to press the case that customers can and should trust automated vehicles. One reason is the global trend of stricter regulations from the NHTSA, Euro NCAP, and in China, which now require automated vehicles to safely meet demanding use cases that are not covered by current sensors, according to Arbe co-founder and CTO Noam Arkind. Arkind told SAE Media that one such category is detecting vulnerable road users (VRU) in poor weather and lighting conditions. “We know from recent tests that a lot of Chinese cars, for example, failed VRU detections in the dark,” he said. “Camera alone doesn't really have reliable pedestrian detection in a dark situation. Radar is a great sensor. It's very sensitive. It's not dependent on weather conditions or lighting conditions, but it's noisy, it's low resolution, and it's hard to use.”
Blanco, Sebastian
DeepDrive's dual-rotor mission began around four years ago, and the company feels like its time has finally come. At IAA Mobility 2025, the Munich-based start-up introduced a new version of its dual-rotor, radial-flux motor for use as a compact generator for range extenders. The MG 250 provides 120 kW continuous power and can be coupled directly to a crankshaft, eliminating the need for a gearbox. DeepDrive's dual-rotor technology uses inner and outer rotors surrounding a stator in a U-shape. Felix Poernbacher, DeepDrive co-founder and co-CEO, told SAE Media that the technology results in higher energy density and a more compact design. The MG 250 was engineered for 96.9% peak efficiency and “an outstanding efficiency map across the continuous operating window,” the company said. The MG 250 also has an integrated SiC inverter and can be configured for oil or water-glycol cooling.
Blanco, Sebastian
As advanced technologies reshape the medical device landscape, the demands placed on contract manufacturers are evolving. Today’s partners are expected to do more than deliver components — they must anticipate disruptions, adapt quickly, and bring a level of technical and strategic depth that supports faster development without compromising quality.
Researchers from Brazil are collaborating with a team at Embry-Riddle Aeronautical University to develop new methods for controlling heat spikes generated by electric aircraft during the takeoff phase of flight. Embry-Riddle Aeronautical University, Daytona Beach, FL Researchers at Embry Riddle Aeronautical University and Brazil's Instituto Tecnológico de Aeronáutica (ITA) will combine forces on one of the main challenges of electric aircraft - controlling the heat spikes they generate at takeoff. The collaboration is supported by a $450,000 National Science Foundation International Research Experiences for Students (NSF IRES) grant.
The U.S. Space Force (USSF) Space Systems Command (SSC) achieved a major milestone during a demonstration event in August, showcasing the Joint Antenna Marketplace (JAM) and successfully transferring the U.S. Naval Research Laboratory's (NRL) Transmit/Receive Enterprise (TREx) Service from a research and development project into an SSC operational prototype. During the demonstration, the team demonstrated the use of commercial antennas for real-time contacts between a Space Development Agency's (SDA) satellite operations center and their Tranche 0 satellites using JAM which leveraged the newly integrated TREx system.
Nuclear microreactors could improve the performance of electric propulsion systems in spacecraft. University of Washington, Seattle, WA To develop spacecraft that can “maneuver without regret,” the U.S. Space Force is providing $35 million to a national research team, including engineers at the University of Washington. It will be the first to bring fast chemical rockets together with efficient electric propulsion powered by a nuclear microreactor. The newly formed Space Power and Propulsion for Agility, Responsiveness and Resilience (SPAR) Institute involves eight universities, and 14 industry partners and advisers in one of the nation's largest efforts to advance space power and propulsion.
From satellites and commercial aircraft to uncrewed aerial vehicles (UAVs), the reliability of aerospace and defense electronics depends on their ability to perform flawlessly in extreme conditions. While stresses such as altitude changes, vacuum, vibration, moisture and chemical exposure have the potential to wreak havoc on electronic components, conformal coatings have become essential to providing protection in the midst of these challenges. Applied as thin, lightweight films that follow the contours of printed circuit boards (PCBs) and components, conformal coatings create a barrier between the electronics and the harsh environments in which they must perform. The coatings' ability to provide dielectric insulation, chemical protection and moisture resistance ensures that mission-critical electronics remain functional on the ground, in the sea, in flight or in orbit.
A new high-temperature resistant material exhibits great potential for applications such as energy-efficient aircraft turbines. Karlsruhe Institute of Technology, Karlsruhe, Germany A new material might contribute to a reduction of the fossil fuels consumed by aircraft engines and gas turbines in the future. A research team from Karlsruhe Institute of Technology (KIT) has developed a refractory metal-based alloy with properties unparalleled to date. The novel combination of chromium, molybdenum, and silicon is ductile at ambient temperature. With its melting temperature of about 2,000 degrees Celsius, it remains stable even at high temperatures and is at the same time oxidation resistant. The results are published in the journal Nature. High-temperature-resistant metallic materials are required for aircraft engines, gas turbines, X-ray units, and many other technical applications. Refractory metals such as tungsten, molybdenum, and chromium, whose melting points are around or higher
For a company focused on selling components to make physical connections in vehicles, TE Connectivity is more than ready for future growth in software-defined vehicles (SDVs) and the corresponding rise in vehicles with zonal architectures. Ruediger Ostermann, vice president and chief technology officer for Global Automotive at TE Connectivity, said TE agrees with industry estimates that the number of cars with a zonal architecture will rise from around 2% in 2023 to between 35-40% in the mid-2030s.
Blanco, Sebastian
Over the almost four decades of having a front row seat to the world's most exciting and dynamic industry, this author has witnessed scores of events, influences and secular shifts. These include new trade agreements, vehicle efficiency initiatives, new technology integration, the occasional bankruptcy, and, of course, the rise and fall of various sales and production markets. One secular shift is still apparent today. In the 1980s, several Japanese OEMs entered the North American market from a production perspective. Growing market share in the U.S. and Canada dictated that these OEMs needed to add North American capacity to reduce inventory, equalize currency, and commit to this market. One byproduct of the rise of Japanese OEMs and their methods was a truly influential book. “The Machine That Changed the World” was a mustread for anyone in our industry (still is). This book, led by MIT's James Womack, outlined the lean production methods by Japanese OEMs and their suppliers. Suffice
A new material might contribute to a reduction of the fossil fuels consumed by aircraft engines and gas turbines in the future. A research team from Karlsruhe Institute of Technology (KIT) has developed a refractory metal-based alloy with properties unparalleled to date. The novel combination of chromium, molybdenum, and silicon is ductile at ambient temperature. With its melting temperature of about 2,000 degrees Celsius, it remains stable even at high temperatures and is at the same time oxidation resistant. The results are published in the journal Nature.
Minimally invasive and interventional platforms increasingly demand smaller profiles, tighter tolerances, and components that maintain performance under thermal, chemical, and mechanical stress. Polyimide (PI) has emerged as a workhorse within these parameters because it combines high strength, thermal stability, chemical inertness, dielectric performance, and biocompatibility in thin-wall formats suitable for catheters, electrophysiology tools, and neurovascular systems. 1- 3
Items per page:
1 – 50 of 26298