Browse Topic: Unmanned ground vehicles

Items (422)
Geometric methods based on Reeds–Shepp (RS) curves offer a practical approach for the parking path planning of unmanned mining truck, but discontinuous curvature can cause tire wear and road damage. To address this issue in mine scenario, a continuous curvature parking path planning method based on transition curve and model predictive control (MPC) is proposed for mine scenarios. Initially, according to the shovel position information issued by the cloud dispatching platform, a reference line is planned using RS curves. In order to mitigate the wear and tear of the tires and the damage to unstructured roads due to the in situ steering caused by the sudden change of the curvature, a transition curve consisting of clothoid–arc–clothoid that satisfies the kinematics of continuous vehicle steering is designed on the basis of RS curves to achieve the continuity of road curvature, which will contribute to the economy of tire and handling performance. The calculation of Fresnel integral
Zhang, HaosenChen, QiushiWu, Guangqiang
Lunar tubes, natural underground structures on the Moon formed by ancient volcanic activity, offer natural protection from extreme temperatures, radiation, and micro-meteorite impacts, making them prime candidates for future lunar bases. However, the exploration of lunar tubes requires a high degree of mobility. Given the Moon's gravity, which is approximately six times weaker than Earth's, efficient navigation across rugged terrains within these lava tubes is achievable through jumping. In this work, we present the design of subsystems for a miniature hexapod rover weighing 1 kg, which can walk, jump, and stow. The walking system consists of two subsystems: one for in-plane walking, employing four single-degree-of-freedom (DoF) legs utilizing the KLANN walking mechanism, and another for directional adjustments before jumping. The latter employs a novel three-DoF mechanism with the cable-pulley system to optimize space utilisation. The design of these legs prioritizes functionality
Shanbhag, Sushanth SureshSharma, ShachindraDamurothu, KrishnaSandeep, R
This SAE Aerospace Information Report (AIR) describes the Architecture Framework for Unmanned Systems (AFUS). AFUS comprises a Conceptual View, a Capabilities View, and an Interoperability View. The Conceptual View provides definitions and background for key terms and concepts used in the unmanned systems domain. The Capabilities View uses terms and concepts from the Conceptual View to describe capabilities of unmanned systems and of other entities in the unmanned systems domain. The Interoperability View provides guidance on how to design and develop systems in a way that supports interoperability.
AS-4JAUS Joint Architecture for Unmanned Systems Committee
The soft and rough terrain on the planet's surface significantly affects the ride and safety of rovers during high-speed driving, which imposes high requirements for the control of the suspension system of planet rovers. To ensure good ride comfort of the planet rover during operation in the low-gravity environment of the planet's surface, this study develops an active suspension control strategy for torsion spring and torsional damper suspension systems for planet rovers. Firstly, an equivalent dynamic model of the suspension system is derived. Based on fractal principles, a road model of planetary surface is established. Then, a fuzzy-PID based control strategy aimed at improving ride comfort for the planet rover suspension is established and validated on both flat and rough terrains. This study provides an advanced suspension system control strategy for planet rovers' ride comfort and safety during high-speed driving, ensuring the smooth operation of vehicles on the rough
Liu, JunZhang, KaidiShi, JunweiWu, JinglaiZhang, Yunqing
A novel control method based on full-order sliding mode is proposed in this paper to solve the trajectory tracking control problem of unmanned vehicle formation. The complexity of the unmanned vehicle system is considered and a dynamic error model of the system is established . A full-order sliding mode control method is adopted to realize the cooperative control of unmanned vehicle systems. The unmanned vehicle system can force each vehicle accurately track the specified trajectory. The simulation results show that the designed full-order sliding mode control method has excellent performance compared with the traditional linear sliding mode control in terms of accuracy and robustness. In the case of large changes in different types of road surface and vehicle dynamics, the movement of unmanned vehicles is effectively controlled, and the trajectory tracking control of unmanned vehicle formation system is realized.
Zhou, MinghaoChen, JiaxinCai, WeiFei, Xueran
In intelligent surveillance and reconnaissance (ISR) missions, multiple autonomous vehicles, such as unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), coordinate with each other for efficient information gathering. These vehicles are usually battery-powered and require periodic charging when deployed for continuous monitoring that spans multiple hours or days. In this paper, we consider a mobile host charging vehicle that carries distributed sources, such as a generator, solar PV and battery, and is deployed in the area where the UAVs and UGVs operate. However, due to uncertainties, the state of charge of UAV and UGV batteries, their arrival time at the charging location and the charging duration cannot be predicted accurately. We propose a stochastic modeling approach to deal with these uncertainties based on certain physical assumptions such as the flight time for a UAV, distance travelled for a UGV, and the final state of charge of the battery before they leave the
Paudel, SarojZhang, JiangfengAyalew, BeshahSkowronska, Annette
RMIT University’s Arnan Mitchell and University of Adelaide’s Dr. Andy Boes led an international team to review lithium niobate’s capabilities and potential applications in the journal Science. The team is working to make navigation systems that help rovers drive on the Moon — where GPS is unable to work — later this decade.
This document defines a set of standard application layer interfaces called JAUS Mission Spooling Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Mission Spooling Services represent the physical platform-independent capabilities commonly found across all domains and types of unmanned systems. At present, one service is defined in this document (more services are planned for future versions of this document): Mission Spooler: Stores, manages, and executes lists of tasks The Mission Spooler service is described by a JAUS Service Definition (JSD) which specifies the message set and message protocol required for compliance. The JSD is fully compliant with the JAUS Service Interface Definition Language (JSIDL).
AS-4JAUS Joint Architecture for Unmanned Systems Committee
The traditional Double Deep Q-Network (DDQN) algorithm suffers from slow convergence and instability when dealing with complex environments. Besides, it is often susceptible to getting stuck in a local optimal solution and may fail to discover the optimal strategy. As a result, Unmanned Ground Vehicle (UGV) cannot search for the optimal path. To address these issues, the study presents an Improved Dueling Double Deep Q Network (ID3QN) algorithm, which adopts dynamic ε-greed strategy, priority experience replay (PER) and Dueling DQN structure. Where, UGV solves the problem of insufficient exploration and overexploitation according to the dynamic ε-greed strategy. Moreover, high-priority experience examples are extracted using the priority experience replay approach. Meanwhile, the Dueling DQN method can effectively manage the relationship between state values and dominance values. According to the experiment’s accomplishments, the ID3QN method outperforms the DDQN approach in terms of
He, ZhaonianPang, HuiBai, ZekunZheng, LizheLiu, Lei
During her recent remarks at the National Defense Industrial Association's (NDIA) Emerging Technologies for Defense conference, U.S. Deputy Secretary of Defense Kathleen Hicks outlined the agency's new “Replicator” initiative. Under the new Replicator initiative, over the next 18 to 24 months, the Defense Department will deploy thousands of low cost autonomous systems across multiple domains. DoD officials are limiting the amount of information they will release around technology or platform specifics for Replicator. Hicks did confirm however that Replicator has been established to counter the rapid buildup of the People's Republic of China's (PRC) armed forces, weapons and new technologies.
NASA launches satellites, rovers, and orbiters to investigate humanity’s place in the Milky Way. When these missions reach their destinations, their scientific instruments capture images, videos, and valuable insights about the cosmos. Communications infrastructure in space and on the ground enables the data collected by these missions to reach Earth. Without ground stations to receive it, however, the extraordinary data captured by these missions would be stuck in space, unable to reach scientists and researchers on Earth.
In the last decades we have witnessed an increasing number of military operations in urban environments. Complex urban operations require high standards of training, equipment, and personnel. Emergency forces on the ground will need specialized vehicles to support them in all parts and levels of this extremely demanding environment including the subterranean and interior of infrastructure. The development of vehicles for this environment has lagged but offers a high payoff. This article describes the method for developing a concept for an urban operations vehicle by characterization of the urban environment, deduction of key issues, evaluation of related prototyping, science fiction story-typing of the requirements for such a vehicle, and comparison with field-proven and scalable solutions. Embedding these thoughts into a comprehensive research and development program provides lines of development, setting the stage for further research.
Hofer , PeterKnight, Charles
Given an unordered list of spatial tasks to be completed by a team of unmanned ground vehicles (UGVs), this paper formulates and solves energy-aware mission planning for the team operating in an off-road geographic area. The mission planning problem uses the unordered task list and a priori-computed energy and time cost-to-go maps of the mission area to create a complete directed graph as input. The mission planner is formulated as an instance of a multi-objective vehicle routing problem allowing for charging rendezvous with a mobile charging host included in the team. A complete list of constraints and the objective function lead to a mixed-integer program that can be solved with existing tools for various mission scenarios. Example mission planning results are included to demonstrate the workings of the approach.
Miller, N.Goulet, N.Ayalew, B.
Autonomous Navigation (AN) in complex-heterogeneous environments is an unsolved issue for both commercial and defense Autonomous Vehicle (AV) applications: A) Based on accumulated data through 2021 there are on average 9.1 driverless car crashes per million miles driven compared to 4.1 human-driven car crashes. B)The US Army recently reduced the requirement for its current Bradley replacement program of record from an “optionally manned fighting vehicle” to a system that “will not be something you operate entirely unmanned in its initial configuration”. C) Between 2021 and 2023 Ford, UBER, Lyft and Tesla have limited their fully AV operations due to safety related business concerns. It is clear a research breakthrough is needed to ensure AV software is mature to a point where it can handle complex driving scenarios. In complex dynamic domains (e.g. intersections or congested terrain) the expected mode of operation for ensured safety of these unmanned systems is still direct human
Frederick, Philip A.
ABSTRACT Unmanned ground vehicles (UGVs) that autonomously maneuver over off-road terrain are susceptible to a loss of stability through untripped rollovers. Without human supervision and intervention, untripped rollovers can damage the UGV and render it unusable. We create a runtime monitor that can provide protection against rollovers that is independent of the type of high-level autonomy strategy (path planning, navigation, etc.) used to command the platform. In particular, we present an implementation of a predictive system monitor for untripped rollover protection in a skid-steer robotic platform. The system monitor sits between the UGV’s autonomy stack and the platform, and it ensures that the platform is not at risk of rollover by intercepting mobility commands sent by the autonomy stack, predicting platform stability, and adjusting the mobility commands to avoid potential rollovers. We demonstrate our implementation through experiments with skid-steer UGVs in Gazebo simulation
Dietrich, ElizabethPohland, SaraGenin, DanielSchmidt, AuroraVallabha, GautamComposto, AnthonyRandolph, Marcus
ABSTRACT Autonomous ground vehicles have the potential to reduce the risk to Soldiers in unfamiliar, unstructured environments. Unmanned operations in unstructured environments require the ability to guide the vehicles from their starting position to a target position. This paper proposes a framework to plan paths across such unstructured environments using a priori information about the environment as cost criteria into a multi-criteria, multi-agent path planner. The proposed multi-criteria, multi-agent path planner uses a penalty-based A* algorithm to plan multiple paths across the unstructured environment and uses entropy weighting for generating weights to calculate a multi-criteria cost with distance, risk, and soil trafficability. The paths generated by the proposed framework provide a better overall performance across the cost criteria and can be used as waypoints to navigate UGVs in off-road environments. Citation: S. Khatiwada, P. Murray-Tuite, M.J. Schmid, “Multi-Criteria
Khatiwada, SachetMurray-Tuite, PamelaSchmid, Matthias J
ABSTRACT This paper contains descriptions and demonstrations of automated test drivers (ATDs) for several different style off-road vehicles. These robotic ATDs can be used without a human operator, to drive vehicles in scenarios that are unsafe for human drivers. Full-scale vehicle tests including rollovers, pitchovers, and crashes involving Recreational Off-Highway Vehicles (ROVs), All-Terrain Vehicles (ATVs), and Zero-Turn Riding Mowers (ZTMs) are included in the paper. The mechanical actuators used to control steering, throttle, and braking differ for the different ATDs. However, they use similar control strategies, network architecture, and electronics. Using these similar items as a starting point would be beneficial for developing ATDs for different styles of military vehicles. Citation: G. Heydinger, S. Zagorski, D. Andreatta, M. Bartholomew, “Development and Use of Driving Robots for Conducting Unmanned Tests of Off-Road Vehicles,” In Proceedings of the Ground Vehicle Systems
Heydinger, GaryZagorski, ScottAndreatta, DaleBartholomew, Meredith
ABSTRACT Presented are two designs for compact, low-profile UGVs with high cross-country mobility, intended for underbody operations with heavy manned vehicles. These UGVs are designed to remotely detect and assess combat damage incurred during combat operations, and analyze wear, leaks, and cracks, without the need for a human technician to be exposed to enemy fire, allowing crews to rapidly assess the conditions of their vehicles. Since robots required for underbody inspection would necessarily maintain a low, compact profile, they could also perform effective last-mile resupply in a contested environment, their small size allowing them to hide behind terrain and battlefield debris much more effectively than a heavy logistics robot. Naturally, a robotic vehicle that is capable of rapid underbody inspection of friendly vehicles or last-mile resupply could also be easily adapted as a combat platform to be used against enemy vehicles. Citation: A. Washington, et al., “Expendable Low
Washington, AnastasyaStempien, AndrewSchouster, RyanWilson, DrewRead, CallumSvoboda, GarretBurton, JaredPendergrass, JacobYoung, FreddieBennett, JacobSapunkov, Oleg B.
ABSTRACT A major benefit of intelligent and autonomous vehicles is their ability to navigate through hazardous environments that pose a significant danger to humans. In such environments, eventual damage to vehicle sensors is often inevitable. To address this threat to vehicle function, we propose a more robust system in which information from alternative sensors is leveraged to restore navigation capabilities in the case of primary sensor failure. This system employs image translation methods that enable the vehicle to use images generated from an auxiliary camera to synthesize the display of the primary camera. In this work, we present a conditional Generative Adversarial Network (cGAN) based method for view translation coupled with a Residual Neural Network for imitation learning. We evaluate our approach in the CARLA simulator and demonstrate its ability to restore navigation capabilities to a real-world vehicle by generating a front-view image from a left-camera view. Citation
Zhang, DanSanders, BradleyByrd, GraysonLuo, FengKrovi, VenkatGorsich, DavidSmereka, Jonathon M.Brudnak, Mark
ABSTRACT Geotechnical site characterization is the process of collecting geophysical and geospatial characteristics about the surface and subsurface to create a 3-dimensional (3D) model. Current Robot Operating System (ROS) world models are designed primarily for navigation in unknown environments; however, they do not store the geotechnical characteristics requisite for environmental assessment, archaeology, construction engineering, or disaster response. The automotive industry is researching High Definition (HD) Maps, which contain more information and are currently being used by autonomous vehicles for ground truth localization, but they are static and primarily used for navigation in highly regulated infrastructure. Modern site characterization and HD mapping methods involve survey engineers working on-site followed by lengthy post processing. This research addresses the shortcomings for current world models and site characterization by introducing Site Model Geospatial System
Richards, Matthew E.Murphy, Kevin F.Toledo, Israel LopezSoylemezoglu, Ahmet
ABSTRACT Automotive electrical/electronic (E/E) architectures are continuously evolving to meet the technological challenges of the highly connected, software-defined vehicle. Advances are being made in µController/µProcessor compute hardware, software, and cyber security methodologies, to provide enhanced security, safety, flexibility and functionality. These advancements will mature through millions of miles of road/lab testing and reach TRLs suitable for use by the Army to implement safe and secure cyber-resilient platforms for manned and unmanned ground vehicle systems. This paper will describe three specific advances that will benefit Army vehicle programs of the future: Software that leverages the Modular Open Systems Approach (MOSA) as a secure and flexible Service Oriented Architecture (SOA) framework; Hardware-based Communication Engines for high bandwidth/low latency network communications; and a Hardware Security Module (HSM) that enhances the cyber-resilience of the next
Cates, JameyNielson, KarlStempnik, Joe
Since the dawn of the space race, the idea of sending humans to Mars has been the subject of aerospace engineering and scientific studies. From the successful flyby of NASA’s Mariner 4 in 1964 to the Perseverance rover in 2020, the missions to Mars have come a long way.
Electrification and autonomous technologies open a whole new world of possibilities for the defense sector. While there are certainly barriers and challenges to integrating these technologies and making them commonplace in the near term, there is also huge potential to revolutionize the state of warfare and defense, especially when considering unmanned ground vehicle platforms. At large, an electric and autonomous future in the defense sector will greatly improve the efficiency and effectiveness of military operations, while also substantially reducing the environmental footprint, fully burdened cost of fuel and risk to human life. Likewise, purely electric propulsion systems do not emit any exhaust gases and are much quieter than conventional counterparts, which is an asset for stealth efforts. Even though these vehicles may not be a reality for quite some time given the need for significant technology and infrastructure advancements, engineers should be diving headfirst into the
Electrification and autonomous technologies open a whole new world of possibilities for the defense sector. While there are certainly barriers and challenges to integrating these technologies and making them commonplace in the near term, there is also huge potential to revolutionize the state of warfare and defense, especially when considering unmanned ground vehicle platforms. At large, an electric and autonomous future in the defense sector will greatly improve the efficiency and effectiveness of military operations, while also substantially reducing the environmental footprint, fully burdened cost of fuel and risk to human life. Likewise, purely electric propulsion systems do not emit any exhaust gases and are much quieter than conventional counterparts, which is an asset for stealth efforts.
Unmanned Ground Vehicle (UGV) has a wide range of applications in the military, agriculture, firefighting and other fields. Path planning, as a key aspect of autonomous driving technology, plays an essential role for UGV to accomplish the established driving tasks. At present, there are many global path planning algorithms in grid maps on unstructured roads, while general grid maps do not consider the specific elevation or ground type difference of each grid, and unstructured roads are generally considered as flat and open roads. On the contrary, the unmanned off-road is always a bumpy road with undulating terrain, and meanwhile, the landform is complex and the types of features are diverse. In order to ensure the safety and improve the efficiency of autonomous driving of UGV in off-road environment, this paper proposes a global off-road path planning method for UGV based on the raw image of remote sensing map. Firstly, the raw image is gridded. The map elevation information is
Zhang, JianXie, FeiWang, ChaoLiu, QiuzhengHong, RiDu, Jinpeng
Semantic segmentation is an integral component in many autonomous vehicle systems used for tasks like path identification and scene understanding. Autonomous vehicles must make decisions quickly enough so they can react to their surroundings, therefore, they must be able to segment the environment at high speeds. There has been a fair amount of research on semantic segmentation, but most of this research focuses on achieving higher accuracy, using the mean intersection over union (mIoU) metric rather than higher inference speed. More so, most of these semantic segmentation models are trained and evaluated on urban areas instead of off-road environments. Because of this there is a lack of knowledge in semantic segmentation models for use in off-road unmanned ground vehicles. In this research, SwiftNet, a semantic segmentation deep learning model designed for high inference speed and accuracy on images with large dimensions, was implemented and evaluated for inference speed of semantic
Selee, BradleyFaykus, MaxSmith, Melissa
A state-of-the-art review of the technical meaning and application of the term ‘maneuver’, used by the U.S. Army and ground vehicle engineering communities, was performed with regard to various military activities, including modeling and simulation (M&S), to focus on the value and applicability of the term to military vehicle dynamics. As shown, U.S. military doctrine has built through history and experience a unique concept of maneuver-in-general and its application in U.S. Army unified land operations. Yet, the term ‘maneuver’ needs further technical categorization and characterization for the purpose of dynamics of military unmanned ground vehicles (UGVs) and vehicle design for maneuver. While the NHTSA and SAE standards and definitions provide solid foundations for M&S of cars and trucks to enhance the safety of those vehicles (manned and autonomous), occupants, and pedestrians on roads, the standards cannot address all needs of military vehicles in maneuver. Military UGVs are
Whitson, Jordan A.Gorsich, DavidVantsevich, Vladimir V.Letherwood, MichaelSapunkov, OlegMoradi, Lee
Traditional ground vehicle architectures comprise of a chassis connected via passive, semi-active, or active suspension systems to multiple ground wheels. Current design-optimizations of vehicle architectures for on-road applications have diminished their mobility and maneuverability in off-road settings. Autonomous Ground Vehicles (AGV) traversing off-road environments face numerous challenges concerning terrain roughness, soil hardness, uneven obstacle-filled terrain, and varying traction conditions. Numerous Active Articulated-Wheeled (AAW) vehicle architectures have emerged to permit AGVs to adapt to variable terrain conditions in various off-road application arenas (off-road, construction, mining, and space robotics). However, a comprehensive framework of AAW platforms for exploring various facets of system architecture/design, analysis (kinematics/dynamics), and control (motions/forces) remains challenging. While current literature on the AAW system incorporates modeling and
Mehta, DhruvKosaraju, Krishna ChaitanyaKrovi, Venkat N
The physical characteristics of Mars's soil have an impact on how easily a spacecraft can land and navigate the planet's surface. On the surface of Mars, wheeled robots known as "rovers" were planted to carry out scientific investigations on the planet's historical temperature, surface geology, and possibilities for past or current life. The challenges of guiding mobile robots across terrain that is sloping, rocky, and deformable have brought to light the significance of creating precise simulation models of the tire and mars soil interaction. In this paper, current efforts to create a terramechanics-based model of rover movement using a Non-Pneumatic (NP) tire on planetary surfaces are discussed. Since no rocks or soils have been brought back to Earth from Mars, Martian simulants are frequently used for testing rovers and other devices for Mars terrain research. Using a Finite Element Analysis-based NP tire model that is modeled and tested, in addition to a dry loose Martian soil that
Sidhu, Charanpreet SinghEl-Sayegh, ZeinabLy, Alfonse
The Association for Uncrewed Vehicle Systems International (AUVSI) is bringing this year's XPONENTIAL 2023 to the Colorado Convention Center in Denver, Colorado. The event, which runs from May 8 - 11, will feature three days of educational programming and more than 600 exhibitors representing all aspects of the unmanned vehicle and robotics industries showcasing their latest technology to attendees from all over the world. So, what's on tap for this year's XPONENTIAL 2023? The theme for this year's XPONENTIAL is “The Blueprint for Autonomy” and AUVSI has updated the event with new features based on attendee feedback.
Magna's full-vehicle expertise, systems savvy, and start-up mindset are opening new mobility markets - with extra pepperoni. Pizza is a subject that puts a smile on most faces, but for Matteo Del Sorbo, the delight extends far beyond the actual pie. “We’re having a lot of fun with this program!” exclaimed Del Sorbo, the executive VP at Magna International and global lead for the Tier 1's New Mobility enterprise, in an interview with SAE Media. “It's demonstrating our ability to innovate and move fast. And it's opening another new market that we very much want to play in.”
Brooke, Lindsay
What Is It? What Does it Do? How Does It Work? The Distributed Extreme Environment Drive System (DEEDS) is an advanced space-rated avionic and actuation control system that addresses a wide thermal range of operations for harsh environments. This new technology development, undertaken by Motiv Space Systems (Motiv), addresses some of the most stringent environmental requirements of lunar and deep space exploration. It will enable sustained operations for critical systems like lunar rovers, robotics, cranes, offload equipment, ISRU processing equipment, and cargo manipulation systems. DEEDS was funded under NASA's SBIR ‘Moon to Mars’ Sequential Program and builds on previously established cryogenic operating avionic SBIR-funded technologies that have been successfully commercialized for orbital and lunar lander systems.
Roboteam Rockville, MD 301-654-2722
The Distributed Extreme Environment Drive System (DEEDS) is an advanced space-rated avionic and actuation control system that addresses a wide thermal range of operations for harsh environments. This new technology development, undertaken by Motiv Space Systems (Motiv), addresses some of the most stringent environmental requirements of lunar and deep space exploration. It will enable sustained operations for critical systems like lunar rovers, robotics, cranes, offload equipment, ISRU processing equipment, and cargo manipulation systems. DEEDS was funded under NASA’s SBIR ‘Moon to Mars’ Sequential Program and builds on previously established cryogenic operating avionic SBIR-funded technologies that have been successfully commercialized for orbital and lunar lander systems.
To achieve battlespace dominance, energy flow characterizations of individual platforms and the aggregate battlespace must be developed to adapt and exploit the variable operating conditions. Army Research Laboratory, White Sands Missile Range, New Mexico The future battlefield will be filled with multiple dissimilar energy networks including unmanned and manned vehicular platforms actively engaged in cooperative control and communications capable of overpowering an adversary and dominating the battlespace. This chaotic multi-domain operational environment will be limited by variable operating conditions (mission profiles, terrain, atmospheric conditions), copious amounts of real-time actionable intelligence derived from weapon and sensor suites, and most importantly, the energy capabilities of each platform. To achieve dominance within the battlespace, energy flow characterizations of individual platforms and the aggregate battlespace must be developed with respect to the variable
ABSTRACT To realize the full potential of simulation-based evaluation and validation of autonomous ground vehicle systems, the next generation of modeling and simulation (M&S) solutions must provide real-time closed-loop environments that feature the latest physics-based modeling approaches and simulation solvers. Real-time capabilities enable seamless integration of human-in/on-the-loop training and hardware-in-the-loop evaluation and validation studies. Using an open modular architecture to close the loop between the physics-based solvers and autonomy stack components allows for full simulation of unmanned ground vehicles (UGVs) for comprehensive development, training, and testing of artificial intelligence vehicle-based agents and their human team members. This paper presents an introduction to a Proof of Concept for such a UGV M&S solution for severe terrain environments with a discussion of simulation results and future research directions. This conceptual approach features: 1
Misko, SamuelFree, ArnoldSivashankar, ShivaKluge, TorstenVantsevich, VladimirHirshkorn, MartinMorales, AndresBrascome, James MichaelRose, ShaylaBowen, NicZhang, SiyanGhasemi, MasoodGardner, StevenFiorini, PierreMaddela, MadhurimaJayakumar, ParamsothyGorsich, DavidManning, ChrisThurau, MatthiasRueddenklau, NicoZachariah, GibinDennis, EvaCostello, Ian
ABSTRACT Leader-follower autonomous vehicle systems have a vast range of applications which can increase efficiency, reliability, and safety by only requiring one manned-vehicle to lead a fleet of unmanned followers. The proper estimation and duplication of a manned-vehicle’s path is a critical component of the ongoing development of convoying systems. Auburn University’s GAVLAB has developed a UWB-ranging based leader-follower GNC system which does not require an external GPS reference or communication between the vehicles in the convoy. Experimental results have shown path-duplication accuracy between 1-5 meters for following distances of 10 to 50 meters. Citation: K. Thompson, B. Jones, S. Martin, and D. Bevly, “GPS-Independent Autonomous Vehicle Convoying with UWB Ranging and Vehicle Models,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.
Thompson, KyleJones, BenMartin, ScottBevly, David
ABSTRACT Many rollover prevention algorithms rely on vehicle models which are difficult to develop and require extensive knowledge of the vehicle. The Zero-Moment Point (ZMP) combines a simple vehicle model with IMU-only sensor measurements. When used in conjunction with haptic feedback, ground vehicle rollover can be prevented. This paper investigates IMU grade requirements for an accurate rollover prediction. This paper also discusses a haptic feedback design that delivers operator alerts to prevent rollover. An experiment was conducted using a Gazebo simulation to assess the capabilities of the ZMP method to predict vehicle wheel lift-off and demonstrate the potential for haptic communication of the ZMP index to prevent rollover. Citation: K. Steadman, C. Stubbs, A. Baskaran, C. G. Rose, D. Bevly, “Teleoperated Ground Vehicle Rollover Prevention via Haptic Feedback of the Zero-Moment Point Index,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
Steadman, KathleenStubbs, ChandlerBaskaran, AvinashRose, Chad G.Bevly, David
ABSTRACT Robotic platforms require accurate geo-spatial localization for high-level mission planning, real-time site reconnaissance, and multi-machine collaboration. Global navigation satellite system (GNSS) receivers are most commonly used to provide UGVs with accurate geolocation. However, GNSS is not reliable in contested environments because it is vulnerable to jamming, spoofing and black-outs. To address these issues, the United States Army Corps of Engineers (USACE) -Engineer Research and Development Center (ERDC) has developed the Active Terrain Localization Imagery System (ATLIS) which uses on-board perception and a priori satellite imagery to eliminate reliance on GNSS for global positioning of a ground vehicle. Using LiDAR and camera imagery, ATLIS creates a vehicle-centric, orthorectified image that is compared to an a priori satellite image using template matching. It then produces a global position estimate for the vehicle. We develop a method to estimate the uncertainty
Niles, KennethBunkley, StevenWagner, W. JacobBlankenau, IsaacNetchaev, AntonSoylemezoglu, Ahmet
This research evaluates the entanglement of an unmanned underwater vehicle (UUV) operating in marine vegetation common to littoral environments. Entanglement was assessed for a traditional UUV with an open, three-bladed propeller transiting a vegetation field at a constant heading and depth. Factors such as the vegetation density, vegetation placement and configuration, propeller revolutions per minute (RPM), and vehicle speed were varied to determine their impact on vehicle entanglement. Results provide insight to the mechanism of entanglement and operating conditions that result in a high or low likelihood of entanglement. These results are of particular interest to the Department of Defense as the military's use of UUVs in littoral environments becomes more prevalent.
In the absence of a physical driveline between the wheels powered by individual electric motors, in this paper, a concept of the virtual driveline system was applied to a small skid-steering unmanned ground vehicle (UGV) for the purpose of controlling its maneuverability, i.e., for fulfilling desired maneuvers in terrain zones constrained by natural and man-made objects. The virtual driveline concept supposes that the UGV driving wheels are connected via a virtual driveline that is a computational code to manage the power split among the wheels by using characteristics of a mechanical driveline system. The kinematic discrepancy factor (KDF) as a mechanical driveline characteristic is utilized to mathematically link the angular velocities and the drive torques of the electrically driven wheels. The UGV maneuverability is considered as a vehicle complex operational property, which characterization and assessment is limited in this study to an analysis of two simple operational properties
Zhang, SiyuanVantsevich, VladimirGorsich, DavidLetherwood, Michael
Items per page:
1 – 50 of 422