Browse Topic: Transmission gears

Items (491)
Gear shift system in a gearbox is used to shift the power flow from one gear set to another gear set which enables manual transmission to maintain different torque and speed combination. Shift quality is determined by the response of the gear shift lever while changing the gears. Shift force over the entire travel event of engagement and disengagement for multiple gear sets is the key factor influencing gear shift quality. If the shift forces are higher, the effort required for shifting will also increase resulting in uncomfortable shifting. On the other hand, with lower shifting force, sudden jerk, vibration or change in vehicle condition may also cause shifting which is undesirable and may lead to safety issue. One of the important features of shift system is auto pull behavior observed while shifting. While shifting, driver starts displacing the shift lever and after threshold point the transmission itself pulls the shift lever to the end point, reducing driver effort. In the
Sabri, Salah AhmadBhimrao, Sachin AhirraoPinto, João PauloMussulini, Bruno CDias, Sebastião Joel
Gear shifting performance in vehicles is critical for smooth operation, especially under cold environment conditions or sub-zero conditions. In this comprehensive study, we delve into the multifaceted aspects that influence gear shifting behaviour during cold conditions especially after overnight vehicle soaking at low temperature below -8°C to simulate real world scenarios. Notably, our efforts on these bench trials focuses on isolating the synchronization load from the maximum block release force, a phenomenon arising from the interaction between synchronizer rings and gear cones in case of high drag of input and counter shafts. Our experimental trials involved multiple bench level testing for lower gear shifting case especially 2nd to 1st gear and 1st to 2nd gear shifting. Factors under study are focusing on changing the Oil (viscosity and quantity), different combination of synchronizer ring material, change of inertia etc. Shifting load in cold condition mainly includes two loads
Mishra, SubodhSiddharth, KumarSingh, Manoj
Gear shifting effort or force especially in manual transmission has been one of the key factors for subjective assessment in passenger vehicle segment. An optimum effort to shift into the gears creates a big difference in overall assessment of the vehicle. The gear shifting effort travels through the transmission shifting system that helps driver to shift between the different available gears as per the torque and speed demand. The shifting system is further divided into two sub-systems. 1. Peripheral system [Gear Shift Lever with knob and shift Cable Assembly] and Shift system inside the transmission [Shift Tower Assembly, Shift Forks, Hub and sleeve Assembly with keys, Gear Cones and Synchronizer Rings etc.] [1]. Both the systems have their own role in overall gear shifting effort. There has been work already done on evaluation of the transmission shifting system as whole for gear shifting effort with typical test bench layouts. Also, work has been on assessment of life of the
Singh, ParamjeetYadav, Sanjay Kumar
Integrated electric drive systems are characterized by high power density, reliability, and controllability, making them increasingly prevalent in the realm of electric commercial vehicles. However, the direct coupling between the motor shaft and the transmission system has introduced a series of undesirable torsional vibration phenomena. To investigate the dynamic characteristics of electric drive systems in operation for electric commercial vehicles, a comprehensive modeling approach is employed. This modeling framework takes into account key factors such as gear backlash, structural flexibility, and electromagnetic spatiotemporal excitations. Based on this model, the influence of the electrical system on time-varying gear mesh stiffness, gear transmission error, bearing forces, and other factors is investigated. Building upon this foundation, the article proposes an approach for active harmonic voltage injection. This method effectively reduces torque fluctuations, decreases the
Xi, XinChen, XiaoliZhao, HongyangZhao, XuanWei, JingLiu, Yonggang
Accurate flywheel torque estimation in combustion engines can be used for monitoring engine performance, creating the potential for lowering emissions and fuel costs. Recently a method was proposed to determine the mean flywheel torque from instantaneous engine speed using the n-th order Fourier series, where n is the number of cylinders firing per crank revolution. However, instantaneous engine speed is affected by two separate torque contributions. The torque resulting from reciprocating masses in the engine, i.e., reciprocating torque, and the torque produced by combustion pressure, i.e., gas torque. Gas torque and reciprocating torque signals have the same frequency but are in opposite phases. Since the resultant torque at the flywheel is the sum of gas and reciprocating torques, there is a need to remove reciprocating torque from the total torque at the flywheel. This requires knowing whether gas or reciprocating torque has a larger amplitude. Here, a method is proposed to
Ely, NathanIddum, VivekGhantasala, MuralidharMeyer, Richard T.
Original equipment manufacturers have already begun to transition their vehicles from traditional internal combustion engines (ICEs) to electric drives (EVs). As the industry continues to move towards electrification, the entire industry, and especially Valeo, is focusing on lean product development (LPD) with the help of numerical simulation. Optimization techniques help industry achieve the most accurate product at the lowest cost without sacrificing performance. Generally gears are mainly used for power transmission in the advanced technologies of electric vehicles. There are many factors that must be taken into account when designing a gear transmission system. Finding the most appropriate design parameters for a gear transmission system can be a challenge, and optimization parameters will help to find the best compromise between them. The main objective of this study is to increase the contact safety factor of the gear system by fulfilling 14 constraints, which are continuous (5
C, LokeshLawrence, LeonsDrouet, BenjaminG, Rajesh KumarGopalakrishnan, Hemanth Kumar
In conventional vehicles the shift strategy has a well-known impact on the system’s efficiency. An appropriate gear choice allows the internal combustion engine (ICE) to operate in efficient operating points (OPs) and thus contributes significantly to a reduced fuel consumption. Further efficiency improvements can be achieved by the hybridization of the powertrain. Due to the two propulsion systems, an additional degree of freedom arises, that requires an energy management strategy (EMS). The EMS controls the split of the requested power between the electric machine (EM) and the ICE. Accordingly, the system’s overall efficiency in hybrid electric vehicles (HEVs) is highly influenced by the quality of the EMS. This paper proposes to adapt an existing method for deriving fuel-optimal rule-based EMS by including the shift strategy for parallel HEVs. It is shown that fuel-optimal control can be achieved. The analytically derived look-up tables can be used to automatically calibrate in
Ehrenberg, BastianEngbroks, LukasSchmiedler, StefanHofmann, Peter
Many sources and paths cause interior cabin noise. Some noise from an electric vehicle is unique and different from a vehicle with an internal combustion engine. Especially, whine noise occurs due to the particular orders of the electromagnetic force of an electric motor and transmission gears, which is tonal and usually reaches high frequencies. This paper covers structure-borne (SB) and airborne (AB) aspects to estimate whine, and the difference between the two characteristics is distinguished. The focus lies mainly on the process of virtual vehicle development and application for performance improvement. First, to predict SB whine, an e-powertrain is modeled as a finite element model (FEM), and electromagnetic (EM) forces are calculated. A vehicle model is also modeled as an FEM, in which interior sound packages are carefully modeled as they play an important role in the medium-frequency region. The e-powertrain and vehicle models (being simulated separately) are combined to obtain
Yoo, Ji WooChae, Ki-SangChoi, JaeHyukKim, MyunggyuCho, SeunghyeonCoster, ChristopheVan Gils, Anneleen
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important Noise Vibration & Harshness (NVH) source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs. A dedicated experimental set-up has been designed in order to measure both structureborne and airborne NVH performances of engine encapsulation insulators applied on an engine casing placed in a coupled
Duval, ArnaudCrignon, GuillaumeGoret, Mickaellei, LeiWilkinson, AlexandreDauchez, NicolasPOLAC, Laurent
By installing an automated mechanical transmission (AMT) on heavy-duty vehicles and developing a reasonable shift strategy, it can reduce driver fatigue and eliminate technical differences among drivers, improving vehicle performance. However, after detaching from the experience of good drivers, the current shifting strategy is limited to the vehicle state at the current moment, and cannot make predictive judgment of the road environment ahead, and problems such as cyclic shifting will occur due to insufficient power when driving on the ramp. To improve the adaptability of heavy-duty truck shift strategy to dynamic driving environments, this paper first analyzes the shortcomings of existing traditional heavy-duty truck shift strategies on slopes, and develops a comprehensive performance shift strategy incorporating slope factors. Based on this, forward-looking information is introduced to propose a predictive intelligent shift strategy that balances power and economy. The vehicle power
Zhang, JunfengChen, DaxinWang, Gaoxiang
This paper proposes an optimization-based transmission gear shifting strategy for electrified powertrains with a transmission. With the demand for reduced vehicle emissions, electrified propulsion systems have garnered significant attention due to their potential to improve vehicle efficiency and performance. An electrified propulsion system architecture of significance includes multiple electric motors and a transmission where some driveline actuators can transmit torque through changing gear ratios. If there is at least one electric motor arranged before the input of the transmission and at least one after the transmission output, a unique design opportunity arises to shift gears in the most energy efficient manner. An optimization-based gear shifting strategy is proposed where torque through the transmission is offloaded to the electric motor arranged after the transmission’s output, the transmission shifts gears with less torque transmitted through it, then the base optimization
Tuller, ZacharyPatel, NadirshWalsh, McKenzie
The automatic transmission of a specialized vehicle encountered challenges in achieving stable oil filling time due to the considerable variability of related parameters and the non-linear trends in the variation of individual product parameters over time. To investigate the underlying causes of this phenomenon and enhance the oil filling efficiency, a detailed model of the clutch oil filling process during gear shifting was established in this paper, which included dynamic models of the key components such as the hydraulic system, clutch, proportional valve, and oil passages. Physical experiments were performed on the test bench to compare with the simulation results. The results showed that the correlation between the simulation model and the test bench was well, which verified the effectiveness of the simulation model. Based on analyzing the clutch filling process, the effects of parameters such as orifice diameter, piston cavity clearance, clutch gap, and oil injection pressure on
Guo, JunFeng, GuangjunWu, JinglaiZhang, Yunqing
Heavy commercial vehicles have large variations in load and high centroid positions, so it is particularly important to obtain timely and accurate load information during driving. If the load information can be accurately obtained and the braking force of each axle can be distributed on this basis, the braking performance and safety of the entire vehicle can be improved. Heavy commercial vehicle load information is different from passenger vehicles, so it is particularly important to study commercial vehicles engaged in freight and passenger transportation. Presently, numerous research endeavors focus on evaluating the quality of passenger vehicles. However, heavy commercial vehicles exhibit notable distinctions compared to their passenger counterparts. Due to substantial variations in vehicle mass pre and post-loading, coupled with notable suspension deformations, significant changes are observed. Hence, the task of estimating the mass of heavy commercial vehicles proves considerably
Zheng, HongyuXin, YafeiYan, Yang
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study. The introduction of feed-forward compensation for variable constant voltage control allows for the securement of more active output power within the
Rho, JeongwonPark, ChilseongKim, TaejinKim, YonghyunHong, Eui SunPark, Daero
The powertrain system plays a crucial role in electric vehicles, exerting significant impact on both the dynamic and economic performances. A breakthrough has been observed by using the dual-motor powertrain system, which outperformed its single-motor counterparts. This study reports a dual-motor powertrain with magnetorheological technology. The powertrain consists of two motors, two magnetorheological brakes and a planetary gear set. Via regulating the brakes, the power transmission flow can be controlled to realise different torque ratios and velocities. The synergetic control of motors and brakes is capable of achieving smooth gear shifting without interruption. This paper details the design of the powertrain system: the structural configuration of the magnetorheological brakes is highlighted, the magnetic field distribution of the brakes under different currents is simulated by COMSOL Multiphysics, and the torque capacities of the brake are also calculated. Future work will focus
Deng, LeiZhao, JinNing, DonghongWong, PakZhao, JingLi, WeihuaDu, Haiping
In view of the vibration and noise problem in the electric drive system, the vibration characteristics of its high-speed reducer are analyzed and studied. Through the vibration and noise bench test of the integrated electric drive system, the contribution of high-speed reducer gear meshing order vibration noise to the vibration noise of the electric drive system was studied. A rigid-flexible coupling dynamic model of high-speed reducer was established, and the accuracy of the model was verified. At the same time, based on the gear modification theory, the effects of different gear modification parameters on the peak-to-peak value of high-speed reducer gear transmission error, the amplitude of each order harmonic of the transmission error, and the vibration acceleration response of the high-speed reducer shell surface were studied. Genetic algorithm was used to optimize the gear modification parameters, and the optimization method was simulated and verified. The results show that the
Zhang, LijunWang, YujieMeng, DejianLi, Wenbo
This study delves into the impact of engine torsional vibration on transmission component failures, specifically synchronizers and clutch damper springs. Synchronizers are crucial in ensuring smooth gear shifts by synchronizing the rotational speeds of the transmission input and output shafts. While design factors such as geometry, friction material, and lubrication are often attributed to synchronizer failures, engine-generated torsional vibrations significantly affect their lifespan. Clutch damper mechanisms integrated into the clutch disc are designed to mitigate these vibrations. This research employs 1D powertrain simulation modeling to predict powertrain torsional vibration behavior. Additionally, rig tests are conducted to simulate vehicle-level angular accelerations and examine the impact of torsional vibrations on synchronizer life. The results provide valuable insights into optimizing clutch damper design to effectively dampen vibrations and prolong transmission component
Jagtap, AmolRudramath, SagarChollangi, DamodarBhandari, Kiran
Wet-sump transmissions are widely used in heavy duty and medium duty vehicles. As these transmissions do not have a dedicated forced lubrication system, it is important that the gear train, shafts, and enclosure are designed appropriately so that enough oil splashes to critical locations to ensure sufficient lubrication. The lubrication effectiveness of such transmissions can be studied through detailed tests or numerical simulations. Often, the vehicle, and therefore the transmission, encounters some severe operating conditions, such as climbing on an incline, driving downhill, etc. Studying these conditions through tests is an expensive process and this imposes the need for an analysis first approach. In this paper, the 3D multiphase Volume of Fluid (VOF) method is used to examine two such extreme cases: an 8-degree tilted installation of transmission in a vehicle, and an inclined condition of transmission during a 10-degree uphill climb. By studying the oil volume fraction on gears
R, ShaminiSachdeva, AniketHanda, JojiSena, CarlosMarson, Luigi
In the current automobile era, weight, emission, and fuel efficiency were driving the overall powertrain development without compromising on the performance. Due to light weight and high-performance engines, the increased level of excitations in terms of torsional, axial, and bending frequency on crank shaft during combustion is inevitable. The axial and bending moment exerted from crankshaft during combustion causes vibration of the clutch diaphragm spring, in turn these vibrations are transferred through the hydraulic release system to clutch pedal which induces undesirable pedal pulsation and vibration during clutch pedal operation. The subjective perception on Noise Vibration and Harshness (NVH) becomes more essential in the Vehicle development process of modern high-performance vehicles. The clutch pedal pulsation in Idle rpm at 10% pedal travel with low frequency less than 80Hz and pedal vibration in higher rpm ranging between 1500 to 2500 RPM at 60% to 80% of total pedal travel
Kumar, SarveshAP, BaaheedharanKanagaraj, Pothiraj
The low running cost of electric two wheelers is resulting in high popularity and growing market share. The electric two wheelers are generally considered silent. However, the tonal nature of radiated noise is annoying for both driver and pedestrians in electric vehicles. This study focuses on electric two-wheeler with annoyance issue. The customer complained about non-linear noise with respect to speed and also whining during loading and coasting. The detailed Noise Source Identification (NSI) revealed that the noise is due to motor and transmission whine and structural resonances of chassis excited by this motor excitation during runup and gear whine orders during coasting when excitation by motor is absent. The motor mounting and chassis are structurally modified with suitable stiffeners and damping based on the results of modal analysis. The transmission gear geometry and contact pattern are optimized for transmission error reduction. The modification resulted in 6-8 dB overall
Chivate, Shriniwas DilipGaikwad, Atul AnnasahebTaware, Ganesh NanasahebWalke, Nagesh
One of the very first customer touchpoint in a vehicle is quality of gear shifting. Gearshift quality is perceived as a symbol of refinement of a vehicle. Globally, lot of efforts are taken to refine the gearshift quality. Design improvements in internal components of transmission, cable and shifter assembly, knob design iterations are carried out to arrive at optimum gearshift quality at the vehicle level. Current practice for this activity includes processes such as design modification, manufacturing of proto components, assembly of components and fitment in the vehicle. This vehicle is then instrumented with sensors and data acquisition units to capture the parameters which determine the gearshift quality. This is an iterative process which goes on until necessary refinement/improvement is achieved. This process requires investment of lot of time, efforts and the budget. This paper describes a virtual approach to arrive at optimum design of components. This paper gives details of a
Tongaonkar, Yogesh ManoharPatel, HiralThambala, PrashanthHalingale, Amol
Vehicle transmission gear rattle is one of the most critical NVH irritants for refined vehicles. It is perceived more dominantly in lower gears of vehicle running. It depends on various design parameters like engine input torque amplitude & fluctuations, driveline torsional vibrations, gear micro & macro geometry, shaft flexibility, etc. Establishing exact contribution of each of these parameters to transmission rattle, thru experimental or simulation technique, is very challenging. Current paper explains the NVH CAE benchmark approach deployed to understand difference in rattle behavior of two transmission designs. Paper focuses on simulation of gear impact power and its sensitivity to transmission shaft deflections. Impact power is one of the indicators of transmission rattle noise and transmission shaft deflection is one of the contributors for gear impact power. 3D MBD simulations are carried out to calculate loose gear impact power by applying angular acceleration input to
Bijwe, Vilas B.Kulkarni, ShriramVaidya, RohitShah, Bhartendra
The commercial vehicles market is dominated by manual transmission, due to lower ownership cost. Generally, commercial vehicles are used in large numbers by the fleet owners. The transmission endurance life is very important to a vehicle owner. On the other hand, driver fatigue can be reduced with a smooth gear change process. The gear change process in a manual transmission is carried out with the help of the synchronizer pack. The crucial function of a synchronizer pack in an automotive transmission is to match the speed of the target gear for smooth gear shifting. In a transmission, the loose and the weakest part is the synchronizer ring. The failure of the synchronizer affects smooth gear shifting and it also affects the endurance life of the transmission. The synchronizer ring can fail due to poor structural strength, synchronizer liner wear, synchronizer liner burning, etc. The synchronizer liner burning is very difficult to analyze since the liner wear pattern is very uneven and
Jamadade, GajananK, Barathi RajaChatterjee, Soumik
The evaluations of ride comfort in gear shifting have been known as one of the dominant factors for vehicle quality assessment. However, those factors have not been assessed and analyzed objectively in-depth in conjunction and integration with general ride and handling parameters. In recent, the criteria set by customer have changed on account of heightened expectations, resulting in a growing demand for enhanced ride comfort. the quality of gear shifting experienced by a customer is evaluated subjectively on road leads to difficulty in arriving inferences and taking decisions due to variation in responses of people on the same situation. This study is involved the process of conversion from subjective to objective assessment on gear shifting quality by identifying the objective parameters for contributing the quality of gear shifting feel. Measuring and analyzing those parameters like lever travel, lever effort, and noise while shifting during dynamic condition at vehicle level on
Manoranjan, R.K S, Sreekanth
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels. All the components
S, SrivatsaPethkar, ShivanandGhosh, Sandeep
In automotive manual transmission gearboxes, the synchronizer rings play a vital role in gear shift operations. The efficiency of the synchronizer ring depends upon the frictional surface geometry. The critical parameter is the synchronizer ring frictional surface circularity. The circularity deviation causes higher synchronizer ring wear and poor cone torque generation. With the current manufacturing methods and the thickness of the synchronizer ring, circularity improvement is a challenge. The synchronizer ring thread turned part is lapped to improve the circularity. Reduction in circularity can be improved by optimizing the lapping operation. In this work, an optimal lapping condition was developed using statistical methods. Taguchi DOE was used to analyze the different parameter combinations along with the noise parameter – different ranges of circularity variation in turning operation. This helps to find the best lapping parameter settings to improve the reduction in circularity
K, Barathi Raja
Manual transmissions are the preferred transmission for drivers who love sporty gear shifts. Manual transmission vehicles are cheaper, very efficient, and offer quick gear shifts. Worldwide manual transmission contributes to 36.15% and in India it contributes overall 80% of today's market share. The customers expect a very smooth gearshift which is a challenge to achieve in all ambient temperatures. In a gear shift event, the synchronizers synchronize the speed of the gears. The force applied at the gear shift knob, generates the cone torque and stops the rotating input shaft for the Neutral (N) to 1 gear shifting. The early morning gear shifts have high gear shift effort. This effort is getting reduced with the increase in temperature. This is due to the drag in the gearbox which is inevitable. This work focuses on improving the very first gear shift event of N to 1 after the engine crank from cold (8°) to hot (80°) condition. The static (engine off) and dynamic (engine on @ idle RPM
K, Barathi RajaKumar, Sabeesh
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed. This study will help to predict the impulse behavior, surface pressure
K, Barathi RajaKumar, Aneesh
In manual transmission, the vital function of synchronizer pack is to synchronize the speed of the target gear for smooth gear shifting. The synchronizer pack consists of various elements and each of these elements has specific function. These elements are baulk rings, shifter sleeve, hub, synchro key, synchro springs etc. The function of synchronizer can be affected due to failure of any one of these elements. This work focuses on the failure of synchronizer pack due to synchro spring failure. The function of synchronizer spring is to exert the required force, to index the synchronizer ring before the movement of shifter sleeve over synchronizer ring. During the shifting of shifter sleeve from one gear to another gear, the springs deflect in both shifting directions. This causes fatigue failure of synchronizer springs. The manufacturing variations, and part quality issues results in very early fatigue failure of synchronizer springs. The failure of synchronizer springs affects the
JAMADADE, GAJANANK, Barathi RajaChatterjee, Soumik
In developing countries, manual transmissions are leading the market due to their efficiency and low cost. In a manual transmission, the synchronizers play a vital role in defining the gear shift quality. Manual transmission vehicles are getting refined for a pleasant driving experience. The gear shift quality is one of the unique selling points for the vehicle, so the automakers are focusing on the reduction of the gear shift forces. In a manual transmission, the synchronizers are used to match the speed difference between the upstream and downstream inertia for the gear-shifting process. The synchronizers have conical friction surfaces to generate friction and cone torque. The increase in cone torque reduces the gear shift impulse. The cone torque can be increased with mismatch tolerance in the frictional surfaces. In this technique, two cone angles are used for the frictional surfaces. The applied force on the synchronizer tooth compresses the synchronizer ring and closes the non
K, Barathi RajaK, Jibin Paul
Manual transmission (MT) is still the most preferred solution for emerging markets due to the lower cost of ownership and maintenance coupled with a higher transmission efficiency. In this regard, continuous improvement of the transmission shift quality is quite essential to meet the growing customer expectations. In the present work, a detailed evaluation of the gear-shift impulse (experienced at the gear-shift knob) is conducted between two different architectures of a manual, high-torque (450 Nm input torque) inline transmission meant for a sports utility vehicle (SUV). The conventional manual inline transmission architecture comprises a common gear pair at the input of the transmission. While this input reduction architecture is the most widely used architecture, having the common gear pair at the output of the transmission is also another option. The synchronizers of the manual transmission need to match the speed of the rotating components just before the gear-shifting event. The
K, Barathi RajaKumar, AneeshR, ManikandanOstwal, Amit
Estimated engine torque is an important parameter used by automotive systems for automated transmission and clutch control. Heavy-duty engine and transmission manufacturers widely use SAE J -1939 based ECU torque calculation based on mass air/fuel flow steady state maps created during calibration of the engine for this purpose. As an alternative, to enhance the accuracy of this important control variable, a virtual flywheel torque sensor (VFTS) was developed. It measures the engine torque based on the harmonics of the instantaneous flywheel speed signal. Initial dynamometer testing showed the VFTS estimated torque values exhibited a maximum inaccuracy of 12% of the actual measured torque over the range of conditions tested. In this paper we report the results of on road truck testing of the VFTS. A loaded heavy truck with a gross vehicle weight rating of 80,000 pounds was used. The performance of the VFTS was tested in different gears at full throttle in the diesel engine speed range
Iddum, VivekBair, JohnChahal, Iqbal SinghMason, PaulGhantasala, Muralidhar K.
In current competitive automobile sector, gear shift quality has become significant factor for vehicle evaluation. OEMs are sensibly focusing on improving gear shift quality to meet customer’s expectations. Though there are different gear shifting habits in different drivers, diagonal shifting is the fastest way of shifting gears in manual transmission vehicle. So the components linked with shift system should be designed to facilitate smooth diagonal gear shift pattern. This paper enlightens the process of defining chamfers on internal gear shifting components for smooth diagonal shifting movement of gear shift lever. It is hard to define chamfers by analytical or practical approach. Creo-mechanism is very useful simulation tool which can be used to understand diagonal shift patterns and to define the chamfers
patil, Manoj MahadevMIRGE, TUSHAR
Noise, Vibration and Harshness (NVH) has become crucial design parameter for automotives which is undergoing enormous technological advancements due to vehicle electrification where bulky, noisy IC Engine which mask driveline and other noises are being replaced by high-speed electric motor as a prime mover. In such electrified drive systems, along with power transmitting gears system, high speed electric motor also acts as source for generating vibrations and noise at vehicle level which are perceptible by end users. The combined effect of the electromechanical sources of excitation is even more severe which directly affect powertrain and subsequently vehicle performance in field. So, electrified drive systems need to be designed for better NVH performance considering motor characteristics curve, speed-torque requirements of application and to diligently capture voice of customer directed towards comfort with low noise levels. In view of this, assessing NVH performance of electrified
Dambir, GauravSelukar, Amol
Due to the multi-gear configuration and high integration of electric drive systems in electric vehicles, it is necessary to investigate the influence of drive motor torque fluctuation on the dynamic characteristics and load sharing performance of planetary gear transmission systems. Considering both motor torque fluctuation and internal excitations of the transmission system, a dynamic model of the electromechanical coupled system is established by combining the Maxwell motor electromagnetic model with the planetary gear dynamics model. Based on the proposed model, the dynamic characteristics, dynamic load performance and load sharing performance of the system considering motor torque fluctuation are analyzed, and the improvement of system load sharing performance due to sun gear floating is discussed. The results show that motor torque fluctuation leads to more complex dynamic response and causes the vibration displacement amplitude to more than doubled. Furthermore, the system
Guo, FangLi, ChenSu, JinzhanLiu, Chao
To address the torsional vibration caused by impact conditions in electric vehicles (EVs), such as deceleration belts and road irregularities, a comprehensive electromechanical coupling dynamics model is developed. This model includes the dynamic behavior of the permanent magnet synchronous motor (PMSM) and the gear transmission system in the EV’s electric drive system. The study aims to investigate the electromechanical coupling dynamics and vibration characteristics of the system under impact conditions. Based on this, an innovative active damping control strategy is proposed for the EV’s electric drive system when subjected to impact conditions. This strategy incorporates active disturbance rejection current compensation (ADRCC) to achieve a speed difference of zero at two ends of the half-shaft as the tracking control target, and compensating current is superimposed on the original given current of the motor controller. The results highlight the effectiveness of the proposed
Ge, ShuaishuaiHou, ShuangYang, YufanZhang, ZhigangTang, Fang
The fast-growing automotive industry and rapid development of new E-drive technology nowadays brings about higher gear design requirements. E-motor applications challenge gear performance due to their higher load and speed levels compared to traditional internal combustion engines (ICE). The advantages of using asymmetric gears include lower stress, higher efficiency, better bending and contact strength, increased durability, etc. However, asymmetric gear dynamics are not well understood or analyzed. This paper performs extensive study on the effect of asymmetric gears on NVH performance of compound gear transmissions. The parametric study covers different combinations of pressure angles and root fillet settings on the drive and coast sides of the gear. The analysis is focused on the sensitivity of gear transmission error (TE) towards different symmetric and asymmetric gear designs. On the system level, the influence of asymmetric gearing on the line-of-action (LOA) and effective mesh
Wright, NedShi, ZhenghongAndres, GregShupe, AndyJasper, LeviPandav, RanjeetNakandakari, Marcelo
The proliferation and increased complexity of electrified powertrains presents a challenge to the associated controls development. This paper outlines the strategy of common supervisory and domain torque management for such powertrains. The strategy covers the multitude of powertrain architectures that exist in the market today while maintaining the fundamental pillars of physics-based torque controls, state-of-the-art optimization methodologies, and common-core hybrid system constraints. The electrified powertrain torque controls that Stellantis LLC. uses include key constituents such as optimization of powertrain state that relate to optimum engine speed and transmission gear, optimization of engine and motor torques, engine start-stop management, and hybrid shift execution which manages powertrain state transitions by interacting with various external transmission systems. The common backbone of these constituents are the dynamic/kinematic equations of the powertrain. Centralizing
Patel, NadirshSha, HangxingMadireddy, KrishnaTuller, Zachary
A new hybrid system has been developed to increase the permissible system weight and raise dynamic performance/system efficiency for the global rollout of Honda's electric vehicles. The powertrain consists of a 2.0L direct injection engine, a Front Drive Unit (FDU) with a built-in traction motor/generator and gear that directly transmit engine torque to the wheels (engine driving gear), a Power Control Unit (PCU) mounted on the FDU, and an Intelligent Power Unit (IPU) mounted under the cargo area. The FDU has a higher RPM (+12%) and higher torque (+6%) traction motor for enhanced launch acceleration performance and maximum vehicle speed settings tailored to regional needs. In addition, a new engine driving gear for low-speed driving has been added to heighten system efficiency by avoiding traction motor driving in low-speed, high-load areas where electrical losses are high, and instead using a driving mode with an engine driving gear (ENGINE MODE). In uphill towing, where the
Akiyama, KatsunoriMurakami, HiroyukiINABA, ICHIRO
The clutch pedal in manual transmission plays a significant role in defining the comfort of driver as it is a direct customer interfaces in the vehicle. Clutch & its hydraulic release system in manual transmission are the significant components which affects the maneuverability of the vehicle and the driver comfort. The clutch pedal characteristics optimization is one of the vital parameters are involving various parameters like pedal effort, pedal travel, hump, engagement and disengagement travel, modulation travel & pedal return curve min load. Normally the clutch pedal characteristics has a hysteresis between the forward and return curve (depress and release of the clutch pedal). The hysteresis is the component of mechanical friction like clutch pedal, clutch cover, and hydraulic seal friction. For an optimum clutch pedal feel, free play, peak effort, max. travel, hump and return load are the major functional parameters. This paper focus on study of the clutch pedal stuck
Mohan, GokulakkannanKanagaraj, PothirajM, DEVAMANALANSankaran, Narayanasamy
Pollutant emissions from vehicles depend on both fuel and driving conditions. This work investigates the impact of using a 20% (V/V) biodiesel blend (B20) on the CO2, NOx, and particle number emissions of a light-duty diesel vehicle, using GT-Suite® software. Combustion parameters and emissions were experimentally measured in a Cummins ISF 2.8 L diesel engine and used as inputs for the model. Vehicle simulations using ULSD and B20 were performed for the standard WLTC driving cycle as well as driving cycles representative of Andean cities, that include steep road slopes and heavy traffic. Additionally, simulations considered three gear-shifting strategies, one based on dynamic gear selection and two on imposed-speed thresholds for each gear shift. Results show that using B20 decreased the particle number emissions in 11.4% for the WLTC driving cycle but increased them in 10.5% and 18.5% for the Andean I and II cycles, respectively. Meanwhile, fuel change increased CO2 emissions in 2.8
Cuaical, VíctorDominguez, SaraValencia, Ana MaríaRamírez, RicardoBotero, Maria LuisaBustamante, Felipe
The influence of engine cooling fan on the working state of engine cooling system under different driving forms and control strategy is studied, and a simulation model of engine thermal management system of a commercial vehicle is established. The model takes into account the measured performance parameters of the cooling system components, the gear shift logic of the transmission, the effect of vehicle speed on the airflow rate of the radiator, and proposes a modeling method for different cooling fan driving forms. The performance parameters such as engine outlet coolant temperature and corresponding cooling fan speed under different vehicle speeds and engine loads are calculated and analyzed by using the established model. The road measurement test of the engine thermal management system under the same working condition was carried out to read the relevant data from the engine ECU and confirm the reliability of the data. The correctness of the model is proved by the comparison
Xu, ZichenWang, XihuiShangguan, WenbinWang, XinlingDuan, Yaolong
This paper focuses on a P3 HEV drivetrain for a performance vehicle with a 2-speed gear shift system. The drivetrain NVH performance varies at different gear and different loading conditions, therefore creates a new level of challenges in optimizing the system. This paper presents the methodologies in optimizing the system NVH, including noise sources from both gearbox and eMotor. CAE modeling methods are discussed and illustrated for their usage in optimizing both structural and acoustic responses. Reasonable correlations to test data are achieved and presented
Ba, JingSun, Zhaohui
State of the art battery electric vehicles (BEVs) become increasingly attractive, thanks to their top performance and high energy efficiency. Nevertheless, despite improvements in electric motors efficiency and motive batteries technology, there is still space for improving BEVs’ autonomy. Among others, use of a multi-speed, instead of a single-speed transmission system has the potential to optimize BEV’s energy consumption and driving range. In this respect, the scope of this work is to demonstrate a novel model-based approach for evaluating the potential of multi-speed gear box technology. For this purpose, advanced vehicle modeling was combined with statistical analysis tools and an optimization algorithm, with an aim to optimize gear ratios and the respective gear shifting strategy, ultimately maximizing BEV’s autonomy and performance. Respective results allow for an in-depth analysis of the multi-speed transmission system, already at early stages of a BEV development, which can
Skarlis, StavrosMolos, Theodoros
In European Union (EU), new heavy-duty vehicles are simulated with the Vehicle Energy Consumption calculation TOol (VECTO) to certify their fuel consumption and CO2 emissions. VECTO will also be used to certify vehicles with hybrid-electric powertrains in all topological configurations from P0 to P4 parallel systems and series hybrids. A development version of VECTO able to simulate these configurations is already available and was used for this study. The study team collected measurement data from a specific P2 hybrid lorry, instrumented with wheel torque sensors, current and voltage sensors, fuel flow sensor and a PEMS device. The vehicle was tested on the chassis dyno and on the road, and a representative model was created in VECTO. The regional delivery certification cycle was simulated in VECTO in charge sustaining and full electric mode. The results show that the development version of VECTO is able to predict the fuel consumption of the vehicle under test in charge sustaining
Bitsanis, EvangelosBroekaert, StijnTansini, AlessandroSavvidis, DimitriosFontaras, Georgios
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening. The study showed technical feasibility in the replacement of Ni for Nb, therefore it should be continued for
Nunes, EduardoColosio, MarcoGaldino, RafaelFreese, SamuelCarlos Zambon, Antonio
Several factors interfere with vehicle fuel consumption. Among them, the relationship between the transmission and the engine, defined as matching, stands out. This paper seeks to analyze the impact of varying the gear step values and, consequently, the intermediate gear ratios on a passenger vehicle's fuel consumption. The vehicle chosen for this analysis was the 2018 Toyota Camry, which has a A25A-FKS "Dynamic Force" engine model with 2.5 liters and 4-cylinders, operating under an Atkinson cycle. The transmission chosen is the UB80E model, which is originally used in this vehicle. It consists of an automatic transmission with 8 gears, coupled to the engine by a Trilok converter. Performance data and brake specific fuel consumption values for this engine were obtained from researches carried out by the U.S. Environmental Protection Agency (EPA). For relating gear step selection influence on the vehicle fuel consumption considering two different driving scenarios, a mathematical model
Vianna Gama, LucasAlberto Souza, Rogério FelipeDe Macedo, Vinicius Ribeiro CavaleiroRossi Lopes, Elias DiasSimão Rodrigues, Gustavo
Mechanical transmissions with gears and shafts transmit torque and speed. However, besides transmitting power, the assembly can behave as torsional vibration amplifier for certain frequencies, and the geometry has a major importance in this context. Using the concept of periodic structures, it is possible to obtain frequency bands with high attenuation, called band gaps. In these wide frequency ranges of attenuation, the structure acts as a mechanical filter, avoiding elastic wave propagation and, therefore, vibration modes. The object of this investigation is the computational modeling of torsional vibrations using the spectral element method and the experimental testing of a periodic shaft with gears, designed to filter both the gear mesh frequency and the engine-related frequency. Hence, a real gearbox shaft is modified to have 3-unit cells and to generate the attenuation frequency bands desired for this application. The effect of gear assembly on the periodic shaft behavior due to
L.A.M. Leão, AndréI. Piva, JoséArruda, J.R.F.
Gears are important machine elements that transfer motion by the meshing of teeth. In this modern era gearbox has become an essential component in industry as well common man day to day life. In most of the industrial conditions gear boxes are subjected to continuous operation, which in many cases evades the maintenance activities. In such scenario the gear box may experience an unexpected failure, which will lead to shut down of the specific unit. Considering the significance of the gearbox, condition monitoring of gear box becomes essential. The helical gear box consists vital components like, helical gears of different ratios, bearing, shaft, gear shifting rod, plumber block etc. But the component which is prone to frequent failure must be prioritized and condition monitored, to ensure a continuous operation of the gearbox. That gives a scope for classification problem using machine learning algorithms. An experimental set was fabricated, and the vibration signals are acquired using
Santhanam, RavikumarSyed, ShaulV, MuralidharanD, Pradeep Kumar
Items per page:
1 – 50 of 491