Browse Topic: Overdrive transmissions
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1
The main objective of this project was to compare the fuel consumption and dynamic performances of direct-drive and overdrive transmission tractors. Fuel consumption was evaluated at constant high speed and on various road profiles, while the dynamic performance was assessed on various road profiles only. The SAE Fuel Consumption Test Procedure (J1526) was used for constant high speed fuel consumption track test evaluations. The direct-drive transmission tractor consumed less than the overdrive transmission tractor, even though it was heavier. The testing on various road profiles was conducted using a towing dynamometer, for comparing the dynamic capability of the tractors when simulating the same towing load on two hilly road profiles: the Townes Pass path (in the Rocky Mountains) and the Saguenay path (in the Saguenay region of Quebec). Each tractor was to haul the set load along the given path while trying to attain 90 km/h speed. Results from the test showed almost identical
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1 The urban driving cycle forms the basis of a Cold-Start Test Procedure described in SAE J1256
Provide standard shift pattern guidelines for manual transmission shift controls in light, medium, and heavy trucks and buses
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1 The urban driving cycle forms the basis of a Cold-Start Test Procedure described in SAE J1256
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks
This procedure incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads or chassis dynamometers.1 The urban driving cycle forms the basis of a Cold-Start Test Procedure described in SAE J1256
This procedure incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns. The procedure is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on a test track or on suitable roads. The urban driving cycle forms the basis of a Cold-Start Test Procedure described in SAE Recommended Practice SAE J1256
This procedure incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns. The procedure is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on a test track or on suitable roads
Items per page:
50
1 – 19 of 19