Browse Topic: Hydraulic fluids

Items (1,573)
A futuristic vehicle chassis rendered in precise detail using state-of-the-art CAD software like Blender, Autodesk Alias. The chassis itself is sleek, low-slung, and aerodynamic, constructed from advanced materials such as high-strength alloys or carbon-fibre composites. Its polished, brushed-metal finish not only exudes performance but also emphasizes the refined form and engineered details. Underneath this visually captivating structure, a sophisticated system of self-hydraulic jacks is seamlessly integrated. These jacks are situated adjacent to the four shock absorber mounts. These jacks are designed to lift the chassis specifically at the tyre areas, and the total vehicle, ensuring that underbody maintenance is efficient and that, in critical situations, vital adjustments or emergency lifts can be performed quickly and safely. The design also incorporates an intuitive control system where the necessary buttons are strategically placed to optimize driver convenience. Whether
Gogula, Venkateswarlu
This SAE Standard specifies uniform methods for the testing of threadless connections for hydraulic fluid power applications. These connections are intended for general application and hydraulic systems on industrial equipment and commercial products. These connections shall be capable of providing leakproof connections in hydraulic systems operating from 95 kPa vacuum to working pressures specified by the manufacturer. Since many factors influence the pressure at which a hydraulic system will or will not perform satisfactorily, it is recommended that sufficient testing be conducted and reviewed by both the user and manufacturer to ensure that required performance levels are met.
Hydraulic Tube Fittings Committee
This SAE Aerospace Standard (AS) establishes the requirements for 24° cone flareless fluid connection fittings and nuts and bite type flareless sleeves for use in aircraft fluid systems at an operating pressure of 5000 psi for the fittings and nuts and 3000 psi for the bite type sleeves.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This aerospace test standard establishes the requirements and procedures for evaluating and comparing the impulse fatigue performance of high pressure hydraulic fittings and tubing. This test method may be used to test similar fluid system components, if desired.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Information Report (AIR) discusses the sources of copper in aviation jet fuels, the impact of copper on thermal stability of jet fuels and the resultant impact on aircraft turbine engine performance, and potential methods for measurement of copper contamination and reduction of the catalytic activity of copper contamination in jet fuels. This document is an information report and does not provide recommendations or stipulate limits for copper concentrations in jet fuels.
AE-5B Aircraft and Engine Fuel and Lubricant Sys Components
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down. The current used dynamic seal
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Standard (AS) establishes the minimum performance standards for equipment used as secondary alternating current (AC) electrical power sources in aerospace electric power systems.
AE-7B Power Management, Distribution and Storage
This specification covers requirements for the superfinishing of High Velocity Oxygen/Fuel (HVOF) applied tungsten carbide thermal spray coatings.
AMS B Finishes Processes and Fluids Committee
This SAE Aerospace Recommended Practice (ARP) establishes a method for evaluating the particulate matter extracted from the working fluid of a hydraulic system or component using a membrane. The amount of particulate matter deposited on the membrane due to filtering a given quantity of fluid is visually compared against a standard membrane in order to provide an indication of the cleanliness level of the fluid.
A-6C1 Fluids and Contamination Control Committee
This SAE Aerospace Information Report (AIR) discusses the forms that air may take in aircraft hydraulic systems. Further, the effects of the various air forms on system operation are addressed. Recommended system design to prevent air effects and maintenance procedures to prevent and remove air are provided. Nitrogen leakage from accumulators is also a source of gas in hydraulic systems and may compose a portion of the “air” in the hydraulic system. The term “air” in this report does not differentiate between a gas composed strictly of normal atmospheric air or one that includes a mixture of additional nitrogen as well. The discussions of the report apply equally with any proportions of atmospheric air and nitrogen in the system.
A-6C1 Fluids and Contamination Control Committee
This SAE Information Report is primarily to familiarize the designer of hydraulic powered machinery with the necessity for oil filtration in the hydraulic power circuit, the degree of system cleanliness required, types of filtration and filters available, and their location and maintenance in the hydraulic circuit.
CTTC C1, Hydraulic Systems
To describe laboratory methods for determining and reporting the contaminant level of the wetted portion of hydraulic fluid power components, parts, subsystems and systems, and of fill fluids. For each type of item, it provides a method of obtaining the liquid sample and the contamination level thereof. It also includes procedures for establishing a sampling plan and guidelines for establishing levels of acceptance, but does not set those levels.
CTTC C1, Hydraulic Systems
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
AC-9 Aircraft Environmental Systems Committee
To provide a method by which to assess the cleanliness of new hydraulic fluids. The method is applicable to new mineral and synthetic hydraulic fluids - regardless of packaging. This SAE Standard is not intended as a procedure for operating equipment.
CTTC C1, Hydraulic Systems
This specification establishes the design, performance, and test requirements for hydraulic quantity measuring fuses intended to be used for hydraulic circuit protection.
A-6C5 Components Committee
This specification covers an acrylonitrile-butadiene (NBR) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS-P-83461 specification or the MIL-PRF-25732 specification.
AMS CE Elastomers Committee
A semi-active suspension system provides superior safety, ride, and handling performance for a vehicle by continuously varying the damping based on vehicle motions, where semi-active hydraulic damper (SAHD) is the most critical component. Today, SAHD’s are standard in most of the premium segments of vehicles and optional extras in mid-size and compact vehicle segments. Electric vehicles require larger sized SAHD’s to meet heavier vehicle loads and meet ride and handling requirements. The aim of this paper is to highlight the design and development methodology of a base valve for larger bore-size for semi-active hydraulic damper. The workflow follows to present a process for base valve design to meet structural strength and, the key steps of design calculations of the hydraulic performance. The design of the base valve and suction disks architecture was engineered with the aid of Computer Aided simulations. The structural performance was analyzed using the Finite Element Analysis (FEA
Chintala, ParameshPatwa, AakashSankaran, Shivanand
This SAE Aerospace Standard (AS) defines the materials, apparatus and procedure for microscopic sizing and counting of particulate contamination of fluid power systems by membrane filtration using microscopic counting.
A-6C1 Fluids and Contamination Control Committee
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a practical definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers/struts. The definition will outline normal (acceptable weepage) and excessive leakage (unacceptable leakage) of shock absorbers/struts that is measurable. The definition of leakage is applicable to new gear assemblies, refurbished/remanufactured (overhauled) shock absorbers/struts, leakage of shock absorbers/struts encountered during acceptance flights, newly delivered and in-service aircraft. This ARP is intended to provide guidelines for acceptable leakage of landing gear shock absorbers/struts between the ambient temperatures of -65 °F (-54 °C) and 130 °F (54 °C) and to outline the procedure for measuring such leakage. The specific limits that are applied to any particular aircraft shall be adjusted by the aircraft manufacturer before inclusion in the applicable maintenance manual.
A-5B Gears, Struts and Couplings Committee
This document describes hydraulic fluids used in landing gear shock struts with extreme high contact pressure and anti-wear additives that have been added for improved lubrication.
A-5B Gears, Struts and Couplings Committee
This AS covers subsonic and supersonic Mach meter instruments which, when connected to sources of static (Ps), and total (Pt), or impact (Pt-Ps), pressure provide indication of Mach number. These instruments are known as Type A. This AS also covers servo-operated repeater or digital display instruments which indicate Mach number when connected to the appropriate electrical output of a Mach transducer of Air Data Computer. These instruments are known as Type B.
A-4ADWG Air Data Subcommittee
This standard covers Airspeed Instruments which display airspeed of an aircraft, as follows:
A-4ADWG Air Data Subcommittee
This AS covers Vertical Velocity Instruments which display the rate of change of pressure altitude of an aircraft, as follows: Type A - Direct reading, self-contained, pressure actuated Type B - Electrically or electronically operated, self-contained, pressure actuated Type C - Electrically or electronically operated, input from a remote pressure sensor
A-4ADWG Air Data Subcommittee
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc.
A-5B Gears, Struts and Couplings Committee
This specification provides requirements and procedures for hydraulic-pressure leak testing of parts.
AMS B Finishes Processes and Fluids Committee
This part of SAE J1926 specifies dimensions, performance requirements, and test procedures for adjustable and nonadjustable light-duty (L series) stud ends with ASME B1.1 threads for use in fluid power and general applications and the O-rings used with them. Stud ends in accordance with this part of SAE J1926 may be used at working pressures up to 35 MPa for nonadjustable and adjustable stud ends. The permissible working pressure depends upon materials, design, working conditions, application, etc. For threaded ports and stud end specified in new designs for hydraulic fluid power applications, only ISO 6149 shall be used. Threaded ports and stud ends in accordance with ISO 1179, ISO 9974, and ISO 11926 shall not be used for new design in hydraulic fluid power applications. Conformance to the dimensional information does not guarantee rated performance. Each manufacturer shall perform testing according to the specification contained in this document to ensure that components made to
Hydraulic Tube Fittings Committee
The procedures contained in this SAE Recommended Practice have been developed to establish uniform methods for impulse and high temperature circulation testing of hydraulic hose assemblies under special conditions not specified in SAE J343 for SAE J517 hoses. Basic test procedures shall be in accordance with SAE J343 except as modified in this document.
Hydraulic Hose and Hose Fittings Committee
This specification covers requirements for the material, design, testing and packaging of straight thread tube fitting boss O-rings. O-rings covered by this specification are acrylonitrile-butadiene rubber.
AMS CE Elastomers Committee
This coding system is intended to provide a convenient means of identifying the various tube, pipe, hydraulic hose type, and hose fittings not intended for use in aircraft and of transmitting technical or engineering information relating to them wherever drawings or other pictorial media may not be readily available. The code has been kept flexible to permit expansion to cover new fitting categories or styles and, if the need develops, the inclusion of additional materials. The system is also compatible with automatic data processing equipment. It is not intended that this code should supersede established systems or means of identification. Therefore, it should be the prerogative of the user to apply the code which best satisfies his requirements.
Fluid Conductors and Connectors Tech Steering Committee
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance. JP-8 fuel is recirculated on the airframe to maintain cooling the oil for AMAD
Suat, YunusÖzkan, Ayşe DilekSirkeci, Ersin
This part of SAE J1926 specifies dimensions, performance requirements, and test procedures for adjustable and nonadjustable heavy-duty (S series) stud ends with ASME B1.1 threads for use in fluid power and general applications. Stud ends in accordance with this part of SAE J1926 may be used at working pressures up to 63 MPa for nonadjustable stud ends and up to 41.3 MPa for adjustable stud ends. The permissible working pressure depends upon materials, design, working conditions, application, etc. For threaded ports and stud ends specified in new designs for hydraulic fluid power applications, only ISO 6149 shall be used. Threaded ports and stud ends in accordance with ISO 1179, ISO 9974, and ISO 11926 shall not be used for new design in hydraulic fluid power applications. Conformance to the dimensional information does not guarantee rated performance. Each manufacturer shall perform testing according to the specification contained in this document to ensure that components made to this
Hydraulic Tube Fittings Committee
This SAE Standard covers general and dimensional specifications for the Code 61 metric (Type 1) and inch (Type 2) flanged heads, flange clamps (FC and FCM), and split flange clamps (FCS and FCSM) applicable to four-screw flange type tube, pipe, and hose connections. Also included are the recommended port dimensions and port design considerations. Type 2 (inch) flange clamps and split flanges are not for new design. The flanged heads specified are incorporated into fittings having suitable means for attachment of tubes, pipes, or hoses to provide connection ends. These connections are intended for application in hydraulic systems, on industrial and commercial products, where it is desired to avoid the use of threaded connections. The rated working pressure of an assembly shall not exceed the least of all the component working pressure rated values. The following general specifications supplement the dimensional data contained in the tables with respect to all unspecified detail. Parts
Hydraulic Hose and Hose Fittings Committee
This part of SAE J1926 specifies dimensions for fluid power and general use ports with inch threads in accordance with ASME B1.1 for use with adjustable and nonadjustable stud ends and plugs shown in SAE J1926-2, SAE J1926-3, and SAE J1926-4. Ports in accordance with this part of SAE J1926 may be used at working pressures up to 63 MPa for nonadjustable stud ends and up to 40 MPa for adjustable stud ends. The permissible working pressure depends upon materials, design, working conditions, application, etc. For threaded ports and stud ends specified in new designs for hydraulic fluid power applications, only ISO 6149 shall be used. Threaded ports and stud ends in accordance with ISO 1179, ISO 9974, and ISO 11926 shall not be used for new designs in hydraulic fluid power applications.
Hydraulic Tube Fittings Committee
This procedure applies to directional control valves or other valves which in various positions direct or block fluid flow as applied to Off-Road Self-Propelled Work Machines as referenced in SAE J1116.
CTTC C1, Hydraulic Systems
This SAE Aerospace Recommended Practice (ARP) covers the design and installation requirements for hydraulic systems (up to 8000 psig [56 MPa]) for ground support equipment (GSE). This ARP is derived from AS5440, which provides hydraulic system requirements for aircraft. The recommendations herein are primarily intended for GSE that exchange hydraulic fluid with the aircraft, such as hydraulic service carts, rather than GSE with non-interfacing hydraulic systems. The GSE may be mobile, portable, or stationary.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) defines contamination classes and levels for particulate contamination of hydraulic fluids and includes methods of reporting related data (Appendix A).
A-6C1 Fluids and Contamination Control Committee
This SAE Aerospace Information Report presents the following factors that affect hydraulic pump life and performance: a The need to supply hydraulic fluid at the correct pressure and quality to the pump inlet port b Considerations for the pump output c Factors to be considered for the pump case drain lines d The mounting of the hydraulic pump e Hydraulic fluid properties, including cleanliness
A-6C4 Power Sources Committee
This SAE Aerospace Standard (AS) specifies the general requirements for data recording procedures, packaging, and storing of elastomeric seals and seal assemblies which include an elastomeric element prior to the seal being assembled into hardware components. NOTE: The requirement for packaging is an integral part of the controlled storage procedure and provides a means of positive product identity from the time of manufacture to the time of assembly into a component.
A-6C2 Seals Committee
This specification establishes the design, performance, and test requirements for hydraulic flow rate fuses intended to be used for hydraulic circuit protection on aircraft.
A-6C5 Components Committee
This SAE Aerospace Recommended Practice (ARP) provides processes for achieving the required cleanliness standards during the fabrication, assembly, and functional test of aircraft hydraulic systems. It covers exclusion and removal of solid and liquid contaminants from tubing during manufacture and final assembly, flushing of the installed system, and final checks to ensure cleanliness requirements are met.
A-6A2 Military Aircraft Committee
This SAE Aerospace Standard (AS) provides general design and test requirements for a flat cut-off pressure compensated, variable delivery hydraulic pump for use in a civil aircraft hydraulic system with a rated system pressure up to 5000 psi (34500 kPa). NOTE: Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard.
A-6C4 Power Sources Committee
This test method describes a procedure for measuring the largest pore or hole in a filter or similar fluid-permeable porous structure. A standard referee test method for precise determination or resolution of disputes is specified. A simpler inspection test procedure for quality assurance “go-no-go” measurement is also given. Bubble-point testing physics, analysis of bubble-point test data, and correlation with other methods of pore size determination are separately discussed in the appendix.
A-6C1 Fluids and Contamination Control Committee
The SAE J526 Standard covers electric-resistance welded single-wall low-carbon steel pressure tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a quality suitable for bending, flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and tube purchaser. The material produced to this specification is intended to service pressure applications where severe forming and bending is not required. As this material may exhibit mechanical properties that reduce some desired forming characteristics versus SAE J356, the severity of the forming requirements of the finished assembly should be considered when utilizing material produced to this
Metallic Tubing Committee
This SAE Standard is intended to establish uniform methods for testing certain types of carbon steel and high strength, low alloy steel tubing as listed in 2.1.1. The specified test and performance criteria applicable to each variety of tubing are set forth in the respective SAE J specifications.
Metallic Tubing Committee
This specification covers a polyalphaolefin/ester-blend fluid.
AMS CE Elastomers Committee
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static applications. The glands have been specifically designed for applications using SAE AS568 size O-rings at pressures exceeding 1500 psi (10.3 MPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi (10.3 MPa) without backup rings. The glands have been sized to provide increased squeeze as compared to AS4716 for more effective sealing at low temperatures and low seal swell conditions. These glands are not recommended for dynamic use. Primary usage is for static external sealing. The rod dimensions are the same as AS4716. The cylinder bore dimensions are the same as AS4716 except for sizes -001 thru -011 and -104 thru -113.
A-6C2 Seals Committee
This specification covers a corrosion-inhibiting, modified epoxy resin primer in the form of a ready-to-use, sprayable liquid.
AMS P17 Polymer Matrix Composites Committee
Items per page:
1 – 50 of 1573