Browse Topic: Aircraft propulsion systems
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inch: a Wrenching Nuts: i.e., hexagon, double hexagon, and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion- and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, regardless of their level of hardness. Due to the growing demand for superior products and the necessity for quick design changes, decision-making in the manufacturing industry has become increasingly intricate. The preliminary intention of this work is to concentrate on Cupronickel and suggest the creation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for the purpose of predictive modeling in ECM. The study employs a Taguchi-grey relational analysis (GRA) methodology to attain multi-objective optimization, with the target of maximizing material removal rate, minimizing surface roughness, and simultaneously achieving precise geometric tolerances. The ANFIS model suggested for Cupronickel provides more flexibility, efficiency, and accuracy compared to conventional approaches, allowing for enhanced monitoring and control in ECM operations
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study focuses on Cupronickel and suggests creating predictive models to anticipate performance metrics in ECM through regression analysis. The experiments are formulated based on Taguchi's principles, and a multiple regression model is utilized to deduce the mathematical equations. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. The proposed prediction technique for Cupronickel is more adaptable, efficient, and accurate in comparison to current models, providing enhanced monitoring capabilities. The updated models have
This SAE Aerospace Standard (AS) provides a performance station designation system for aircraft propulsion systems and their derivatives.
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification. Test methodologies under development will also be described for consideration during future revisions of AS5780.
This SAE Aerospace Information Report (AIR) provides an overview of temperature measurement techniques for various locations of aircraft gas turbine engines while focusing on current usage and methods, systems, selection criteria, and types of hardware.
Hypersonic propulsion would allow for air travel at speeds of Mach 6 to 17, or more than 4,600 to 13,000 miles per hour, and has applications in commercial and space travel.
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws.
This paper explores the groundbreaking applications of plasma propulsion engines and advanced nanomaterials in low-altitude aircraft, addressing the challenges and recent technological advancements that make such applications feasible. Traditional space plasma thrusters operate effectively in near-vacuum conditions by taking advantage of the ease of plasma ignition at low pressures. However, these thrusters face significant difficulties when operated at near-atmospheric pressures found in low-altitude environments, where plasma ignition is challenging. This paper highlights recent breakthroughs in high-pressure plasma glow discharge technology and the integration of nanomaterials, which together enable the use of plasma propulsion engines in low-altitude aircraft. These innovations offer substantial advantages over conventional engines, including higher efficiency, reduced emissions, and the potential to fundamentally change the propulsion systems of low-altitude aircraft.
SABERS, as this portfolio of innovations is named, refers to Solid-state Architecture Batteries for Enhanced Rechargeability and Safety. Developed jointly at NASA’s Glenn, Langley and Ames Research Centers, SABERS includes several advanced material, manufacturing and computational design innovations that enable a new paradigm in battery performance. The primary target application is next-generation electric aviation propulsion systems, yet SABERS will benefit other applications, too.
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturer’s manuals for the latest listing of acceptable lubricants. Compliance with this specification must be accomplished in accordance with the Performance Review Institute (PRI) product qualification process as described in the documents referenced in 2.1.3. Requests for submittal information may be made to the PRI at the address shown in 2.1.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Approval and/or certification for use of a specific piston engine oil in aero applications is the responsibility of the individual equipment builders and/or governmental
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws.
The supplier shall use the following process to respond to a customer request for corrective and preventive action.
This standard defines the minimum requirements for conducting Measurement Systems Analysis (MSA) for variable and attribute assessment on characteristics as defined on the drawing or specification. It does not define the detailed analytical methods for each type of study as these can be found in existing published texts (see Section 2 for guidance).
This standard defines requirements for the identification, assessment, mitigation, and prevention of risk in the manufacturing process through the application of Process Flow Diagrams (PFDs), Process Failure Mode and Effects Analysis (PFMEA) and Control Plans throughout the life cycle of a product. This standard aligns and collaborates with the requirements of AS9100, AS9102, AS9103, and AS9145. The requirements specified in this standard apply in conjunction with and are not alternative to contractual and applicable statutory and regulatory requirements. In case of conflict between the requirements of this standard and applicable statutory or regulatory requirements, the latter shall take precedence.
This standard establishes requirements for Process Control Methods to sustain product conformity. This includes training, selection of control methods, analysis and improvement of their effectiveness, and subsequent monitoring and control. It applies to all controls documented in the Control Plan. This will include but is not limited to Key Characteristics (KCs) and Critical Items (CIs). This standard aligns and collaborates with the requirements of AS9100, AS9103, AS9145, AS13000, AS13002, AS13003, and AS13004. Commercial-Off-The-Shelf (COTS) items and Standard Catalogue Items (that neither the customer nor supplier hold design authority for) are not included.
This SAE Aerospace Standard (AS) establishes the requirements for heat-cured solid film lubricants. For other general or high-temperature applications, refer to AS1701. This document requires qualified products.
This procurement specification covers aircraft quality retaining rings of the spiral wound type with uniform rectangular cross-sections and made from a corrosion resistant austenitic iron base alloy of the type identified under the Unified Numbering System as UNS S30200, and of spring temper condition.
This specification covers closely-wound helical coil, screw thread inserts made from an age hardenable nickel base alloy formed wire of the type identified under the Unified Numbering System as UNS N07750. The inner surface of the insert coil, after assembly into a screw thread tapped hole, provides internal threads of standard 60° Unified Form.
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inches: a Wrenching Nuts: i.e., hexagon, double hexagon and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion and heat resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180,000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
This procurement specification covers aircraft-quality solid rivets and tubular end rivets made from a corrosion-resistant steel of the type identified under the Unified Numbering System as UNS S34700.
This SAE Standard establishes the requirements for non-dispersant lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers’ manuals for the latest listing of acceptable lubricants. Compliance with this specification must be accomplished in accordance with the Performance Review Institute (PRI) product qualification process as described in the documents referenced in 2.2.2. Requests for submittal information may be made to the PRI at the address shown in 2.2.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Approval and/or certification for use of a specific piston engine oil in aerospace applications is the responsibility of the individual equipment builders and/or governmental authorities and may be accomplished
This procedure is intended to apply to fuel pumps. This procedure will be defined in terms of recommended test fluid, test setup, test conditions, and test method. This procedure may be used for other fuel system components, by testing in conjunction with the pump, which normally supplies the component inlet flow, or a substitute test pump of similar capacity. This procedure may be used, with variations in test conditions and test fluid, for performing pump evaluation tests. Tests at progressively increasing pump speeds and pressures will provide design limitation data. Alternate test periods on a test pump and another pump, of a design for which actual service durability is known, will provide useful comparison data.
Items per page:
50
1 – 50 of 4355