Browse Topic: Aircraft propulsion systems
This Aerospace Standard (AS) provides the general requirements for hydraulic components that are used in military aircraft and missile hydraulic systems.
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities.
This SAE Aerospace Standard (AS) establishes the requirements for AS3504 and AS3505 thin wall self-locking inserts made from a corrosion and heat resistant, age hardenable nickel base alloy of the type identified under the Unified Numbering System as UNS N07718.
This document discusses, in broad and general terms, the subject of acoustical considerations in engine test cells. One of the primary purposes of an engine test cell is to control the noise emanating from the operating engine in order to reduce noise in the surrounding facility and community to acceptable levels. This is done by the design and installation of specialized acoustic elements and features, which need to be fully integrated into the overall test cell design. It should be further noted that the requirements of acoustic control are critical to the proper operation of the engine, safety of plant equipment and personnel, and meeting local and legal noise requirements.
This procurement specification covers all metal, self-locking wrenching nuts, plate nuts, shank nuts, and gang channel nuts made of a corrosion and heat resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001.
This document covers all metal, self-locking wrenching nuts, plate nuts, shank nuts, and gang channel nuts made from a corrosion and heat resistant steel of the type identified under the Unified Numbering System as UNS S66286 and of 160 ksi tensile strength at room temperature, with maximum test temperature of parts at 1200 °F.
A pathway to in-flight application of filtered Rayleigh scattering (FRS) is herein presented, including a viable concept, based on recently published related work. The proposed pathway considers the key technical, operational, and regulatory challenges to enable in-flight measurements using FRS for inlet flow distortion characterization ahead of the aeroengine. Solutions to these challenges are proposed, in particular methods for light delivery, flow imaging and integration of the measurement system in the in-flight environment. This complements the experimental lab-scale demonstration of an FRS concept for flow distortion measurements and provides a route for further exploitation as a diagnostic tool for next-gen aircraft.
This document covers bolts and screws made from a corrosion- and heat-resistant, precipitation-hardenable, iron base alloy of the type identified under the Unified Numbering System as UNS S66286.
A new high-temperature resistant material exhibits great potential for applications such as energy-efficient aircraft turbines. Karlsruhe Institute of Technology, Karlsruhe, Germany A new material might contribute to a reduction of the fossil fuels consumed by aircraft engines and gas turbines in the future. A research team from Karlsruhe Institute of Technology (KIT) has developed a refractory metal-based alloy with properties unparalleled to date. The novel combination of chromium, molybdenum, and silicon is ductile at ambient temperature. With its melting temperature of about 2,000 degrees Celsius, it remains stable even at high temperatures and is at the same time oxidation resistant. The results are published in the journal Nature. High-temperature-resistant metallic materials are required for aircraft engines, gas turbines, X-ray units, and many other technical applications. Refractory metals such as tungsten, molybdenum, and chromium, whose melting points are around or higher
A new material might contribute to a reduction of the fossil fuels consumed by aircraft engines and gas turbines in the future. A research team from Karlsruhe Institute of Technology (KIT) has developed a refractory metal-based alloy with properties unparalleled to date. The novel combination of chromium, molybdenum, and silicon is ductile at ambient temperature. With its melting temperature of about 2,000 degrees Celsius, it remains stable even at high temperatures and is at the same time oxidation resistant. The results are published in the journal Nature.
Raytheon East Hartford, CT corporatepr@rtx.com
Accurate defect quantification is crucial for ensuring the serviceability of aircraft engine parts. Traditional inspection methods, such as profile projectors and replicating compounds, suffer from inconsistencies, operator dependency, and ergonomic challenges. To address these limitations, the 4D InSpec® handheld 3D scanner was introduced as an advanced solution for defect measurement and analysis. This article evaluates the effectiveness of the 4D InSpec scanner through multiple statistical methods, including Gage Repeatability and Reproducibility (Gage R&R), Isoplot®, Youden plots, and Bland–Altman plots. A new concept of Probability of accurate Measurement (PoaM)© was introduced to capture the accuracy of the defect quantification based on their size. The results demonstrate a significant reduction in measurement variability, with Gage R&R improving from 39.9% (profile projector) to 8.5% (3D scanner), thus meeting the AS13100 Aerospace Quality Standard. Additionally, the 4D InSpec
This SAE Aerospace Recommended Practice (ARP) provides guidance for substantiating the airworthiness of aircraft engine components. Generally, these components are associated with the engine control system, the system or systems that allow the engine to provide thrust or power as demanded by the pilot of the aircraft while also ensuring the engine operates within acceptable operating limits. But these components may also include hardware and systems associated with engine lubrication, engine or aircraft hydraulic or electrical systems, aircraft environmental control systems, thrust reverser control, or similar aircraft or engine propulsion system functions. This paper develops the concept of using a standardized 26-item checklist of environmental conditions for evaluating aircraft engine component airworthiness. This approach is compatible with current practices used in the industry and has been accepted by engine certification authorities in conjunction with other guidance as
Items per page:
50
1 – 50 of 4435