Browse Topic: Aircraft propulsion systems

Items (4,355)
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inch: a Wrenching Nuts: i.e., hexagon, double hexagon, and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion- and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
E-25 General Standards for Aerospace and Propulsion Systems
This work focuses on the design and multi-parametric analysis of a designed propeller for a Pentacopter unmanned aerial vehicle (UAV). The basic and secondary design inputs, along with performance data like propeller diameter, pitch angle, chord length, and lift coefficient, are established using a standard analytical method. Approximately ten distinct airfoils, specifically NACA 2412, NACA 4109, NACA 4312, NACA 4409, NACA 4415, NACA 5317, NACA 6409, NACA 6412, NACA 23024, and NACA 25012, are evaluated over 13 Reynolds Numbers with the angle of attacks (AOA) of 20, varying from -5 to 15 degrees, for the purpose of detailed propeller design. The lift and drag coefficient values for ten distinct airfoils, utilizing a Reynolds number of 13 and 20 angles of attack, are obtained from the XFOIL software. Three sophisticated airfoils are selected from a pool of ten based on their high Lift-to-Drag (L/D) ratio performance. The selected airfoils with a high L/D ratio are NACA 6409, NACA 4109
Veeraperumal Senthil Nathan, Janani PriyadharshiniArumugam, ManikandanRajendran, MahendranSolaiappan, Senthil KumarKulandaiyappan, Naveen KumarMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, regardless of their level of hardness. Due to the growing demand for superior products and the necessity for quick design changes, decision-making in the manufacturing industry has become increasingly intricate. The preliminary intention of this work is to concentrate on Cupronickel and suggest the creation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for the purpose of predictive modeling in ECM. The study employs a Taguchi-grey relational analysis (GRA) methodology to attain multi-objective optimization, with the target of maximizing material removal rate, minimizing surface roughness, and simultaneously achieving precise geometric tolerances. The ANFIS model suggested for Cupronickel provides more flexibility, efficiency, and accuracy compared to conventional approaches, allowing for enhanced monitoring and control in ECM operations
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeKiruthika, JothiSilambarasan, R
This article explores the utilization of simple-cubic, diamond, octet-truss, and X-type lattice structures for low-pressure turbine blades in engine turbines to enhance natural frequency and decrease overall engine weight while maintaining structural integrity. The research method involves analyzing polylactic acid (PLA) hollow T106C blades with fully infilled and 50–80 location-based lattice arrangements. The study modifies the strut thickness of lattice structures using both constant and variable-based approaches and applies a generalized formula based on relative density to evaluate how changes in lattice thickness and arrangements influence natural frequencies. Furthermore, the investigation extends to multi-lattice configurations, introducing a parameter 𝑘 to signify the transition between different lattices. The modified blades were 3D printed using PLA and tested for natural frequencies through modal testing. The results demonstrate that location-based 50–80 exponential-based
Reewarabundith, Siwachai
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study focuses on Cupronickel and suggests creating predictive models to anticipate performance metrics in ECM through regression analysis. The experiments are formulated based on Taguchi's principles, and a multiple regression model is utilized to deduce the mathematical equations. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. The proposed prediction technique for Cupronickel is more adaptable, efficient, and accurate in comparison to current models, providing enhanced monitoring capabilities. The updated models have
Pasupuleti, ThejasreeNatarajan, ManikandanSagaya Raj, GnanaSilambarasan, RSomsole, Lakshmi Narayana
Sustainable aviation fuels (SAFs) derived from renewable sources are promising solutions for achieving carbon neutrality and further controlling aircraft engine emissions, operating costs, and energy security. These SAFs, primarily consist of branched and normal paraffins and exhibit significantly reduced sooting tendencies compared to conventional petroleum-based jet fuels, due to their lack of aromatics content. Our previous study investigated soot formation in non-premixed combustion for three ASTM-approved alternative jet fuels, namely Fischer–Tropsch synthetic paraffinic kerosene (FT-SPK), hydroprocessed esters and fatty acids from camelina (HEFA-Camelina), and alcohol-to-jet (ATJ), and demonstrated that the varying paraffinic composition within SAFs results in diverse sooting propensities, in the order of ATJ > FT-SPK > HEFA-Camelina. To evaluate the impact of iso-paraffins on sooting tendency and validate the suitability of utilizing binary blends of iso-dodecane (iC12) and
Xue, XinSung, Chih-JenWang, Xiaofeng
Engines subject to dust, industrial pollution, saltwater contamination or other chemically laden atmosphere (including pesticides and herbicides) lose performance due to deposits of contaminants on surfaces in the aidgas flow path. Engine wash and engine rinse procedures are utilized to restore turbine engine performance. These procedures are generated by the engine manufacturer and are included in the Engine Maintenance/Service Manuals. For most turbine engines these procedures are similar in concept and practice; however, application details, choice of solvents and many other service features can vary from engine manufacturer to engine manufacturer and may even vary within the range of engine models produced by any manufacturer. The intent of this SAE Aerospace Information Report (AIR) is to outline the general nature, considerations, and background of engine wash and engine rinse and is directed towards the needs of the entry level engineer, service engineer, and those involved in
S-12 Powered Lift Propulsion Committee
This SAE Aerospace Standard (AS) provides a performance station designation system for aircraft propulsion systems and their derivatives.
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
The lubricant performance capability for aero-propulsion drive systems is derived from the physical properties, chemical properties, and the transport phenomena of the oil. Viscosity, pressure-viscosity coefficient, and elastohydrodynamic (EHD) full-film traction coefficient are inherent properties of the lubricating fluid. Full-film traction coefficient is a required input for thermal performance prediction and engineering design. Traction coefficient data can be modeled and used as an input into bearing and gear analysis codes. This document describes a test method for traction coefficient measurement of 5 cSt oils under service-like conditions for high-stress Hertzian elastic contacting bodies operating under temperatures and sliding (slip) velocities found in high-speed rolling element bearings and gears.
E-34 Propulsion Lubricants Committee
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification. Test methodologies under development will also be described for consideration during future revisions of AS5780.
E-34 Propulsion Lubricants Committee
This SAE Aerospace Information Report (AIR) provides an overview of temperature measurement techniques for various locations of aircraft gas turbine engines while focusing on current usage and methods, systems, selection criteria, and types of hardware.
E-32 Aerospace Propulsion Systems Health Management
Hypersonic propulsion would allow for air travel at speeds of Mach 6 to 17, or more than 4,600 to 13,000 miles per hour, and has applications in commercial and space travel.
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws.
E-25 General Standards for Aerospace and Propulsion Systems
The fixed-wing VTOL is a new type of aircraft that combines the advantages of multi-rotor and fixed-wing aircraft. Enable freely taking off and landing, while maintaining high flight speeds during cruising. However, higher requirements for the powertrain system have emerged. The powertrain needs to adapt to the layout of distributed propulsion devices while also ensuring sufficient endurance. Both the full-electric powertrain and traditional fuel-based powertrain are unable to meet this demand, making the hybrid-electric powertrain one of the most feasible solutions currently available. A 10kW level hybrid-electric powertrain system was designed for a fixed-wing VTOL aircraft. The power generation performance tests are conducted to analyze the coupling working characteristics of the engine and generator. The performance of the hybrid configuration and the full-electric configuration in terms of power-to-weight ratio, energy-to-weight ratio, and endurance are compared. The results
Yanan, LiLi, HaiwangXie, GangSun, Mohan
This paper explores the groundbreaking applications of plasma propulsion engines and advanced nanomaterials in low-altitude aircraft, addressing the challenges and recent technological advancements that make such applications feasible. Traditional space plasma thrusters operate effectively in near-vacuum conditions by taking advantage of the ease of plasma ignition at low pressures. However, these thrusters face significant difficulties when operated at near-atmospheric pressures found in low-altitude environments, where plasma ignition is challenging. This paper highlights recent breakthroughs in high-pressure plasma glow discharge technology and the integration of nanomaterials, which together enable the use of plasma propulsion engines in low-altitude aircraft. These innovations offer substantial advantages over conventional engines, including higher efficiency, reduced emissions, and the potential to fundamentally change the propulsion systems of low-altitude aircraft.
Ma, XinDing, ShuitingPan, YilunLiu, JinshuoQiao, HuizheYang, Jincai
Sustainable Aviation Fuels (SAFs) offer great promises towards decarbonizing the aviation sector. Due to the high safety standards and global scale of the aviation industry, SAFs pose challenges to aircraft engines and combustion processes, which must be thoroughly understood. Soot emissions from aircrafts play a crucial role, acting as ice nuclei and contributing to the formation of contrail cirrus clouds, which, in turn, may account for a substantial portion of the net radiative climate forcing. This study focuses on utilizing detailed kinetic simulations and soot modeling to investigate soot particle generation in aero-engines operating on SAFs. Differences in soot yield were investigated for different fuel components, including n-alkanes, iso-alkanes, cycloalkanes, and aromatics. A 0-D simulation framework was developed and utilized in conjunction with advanced soot models to predict and assess soot processes under conditions relevant to aero-engine combustion. The simulations
Yi, JunghwaManin, JulienWan, KevinLopez Pintor, DarioNguyen, TuanDempsey, Adam
SABERS, as this portfolio of innovations is named, refers to Solid-state Architecture Batteries for Enhanced Rechargeability and Safety. Developed jointly at NASA’s Glenn, Langley and Ames Research Centers, SABERS includes several advanced material, manufacturing and computational design innovations that enable a new paradigm in battery performance. The primary target application is next-generation electric aviation propulsion systems, yet SABERS will benefit other applications, too.
The aviation industry is undergoing environmental scrutiny due to its significant greenhouse gas emissions. Sustainable aviation fuels (SAFs) are a vital solution for reducing carbon emissions and pollutants, aligning with global efforts for carbon-neutral aviation growth. SAFs can be produced via multiple production routes from different feedstock, resulting in significantly different physical and chemical fuel properties. Their suitability in a compression-ignition (CI) aircraft engine was evaluated through test bench investigations at TU Wien - Institute of Powertrain and Automotive Technology in partnership with Austro Engine. ASTM D7566-certified fuels like Hydrotreated Vegetable Oil (HVO), Fischer–Tropsch–Kerosene (FTK) or Alcohol to Jet (AtJ), but also an oxygen containing biodiesel have been tested extensively. Gaseous emissions, soot emissions, indication measurement data, efficiencies, and the like were acquired and comprehensively analyzed for engine operation with different
Kleissner, FlorianHofmann, Peter
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturer’s manuals for the latest listing of acceptable lubricants. Compliance with this specification must be accomplished in accordance with the Performance Review Institute (PRI) product qualification process as described in the documents referenced in 2.1.3. Requests for submittal information may be made to the PRI at the address shown in 2.1.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Approval and/or certification for use of a specific piston engine oil in aero applications is the responsibility of the individual equipment builders and/or governmental
E-38 Aviation Piston Engine Fuels and Lubricants
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws.
E-25 General Standards for Aerospace and Propulsion Systems
The supplier shall use the following process to respond to a customer request for corrective and preventive action.
G-22 Aerospace Engine Supplier Quality (AESQ) Committee
This standard defines the minimum requirements for conducting Measurement Systems Analysis (MSA) for variable and attribute assessment on characteristics as defined on the drawing or specification. It does not define the detailed analytical methods for each type of study as these can be found in existing published texts (see Section 2 for guidance).
G-22 Aerospace Engine Supplier Quality (AESQ) Committee
This standard defines requirements for the identification, assessment, mitigation, and prevention of risk in the manufacturing process through the application of Process Flow Diagrams (PFDs), Process Failure Mode and Effects Analysis (PFMEA) and Control Plans throughout the life cycle of a product. This standard aligns and collaborates with the requirements of AS9100, AS9102, AS9103, and AS9145. The requirements specified in this standard apply in conjunction with and are not alternative to contractual and applicable statutory and regulatory requirements. In case of conflict between the requirements of this standard and applicable statutory or regulatory requirements, the latter shall take precedence.
G-22 Aerospace Engine Supplier Quality (AESQ) Committee
This standard establishes requirements for Process Control Methods to sustain product conformity. This includes training, selection of control methods, analysis and improvement of their effectiveness, and subsequent monitoring and control. It applies to all controls documented in the Control Plan. This will include but is not limited to Key Characteristics (KCs) and Critical Items (CIs). This standard aligns and collaborates with the requirements of AS9100, AS9103, AS9145, AS13000, AS13002, AS13003, and AS13004. Commercial-Off-The-Shelf (COTS) items and Standard Catalogue Items (that neither the customer nor supplier hold design authority for) are not included.
G-22 Aerospace Engine Supplier Quality (AESQ) Committee
This SAE Aerospace Standard (AS) establishes the requirements for heat-cured solid film lubricants. For other general or high-temperature applications, refer to AS1701. This document requires qualified products.
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers aircraft quality retaining rings of the spiral wound type with uniform rectangular cross-sections and made from a corrosion resistant austenitic iron base alloy of the type identified under the Unified Numbering System as UNS S30200, and of spring temper condition.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers closely-wound helical coil, screw thread inserts made from an age hardenable nickel base alloy formed wire of the type identified under the Unified Numbering System as UNS N07750. The inner surface of the insert coil, after assembly into a screw thread tapped hole, provides internal threads of standard 60° Unified Form.
E-25 General Standards for Aerospace and Propulsion Systems
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inches: a Wrenching Nuts: i.e., hexagon, double hexagon and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion and heat resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180,000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
E-25 General Standards for Aerospace and Propulsion Systems
This procurement specification covers aircraft-quality solid rivets and tubular end rivets made from a corrosion-resistant steel of the type identified under the Unified Numbering System as UNS S34700.
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Standard establishes the requirements for non-dispersant lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers’ manuals for the latest listing of acceptable lubricants. Compliance with this specification must be accomplished in accordance with the Performance Review Institute (PRI) product qualification process as described in the documents referenced in 2.2.2. Requests for submittal information may be made to the PRI at the address shown in 2.2.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Approval and/or certification for use of a specific piston engine oil in aerospace applications is the responsibility of the individual equipment builders and/or governmental authorities and may be accomplished
E-38 Aviation Piston Engine Fuels and Lubricants
This procedure is intended to apply to fuel pumps. This procedure will be defined in terms of recommended test fluid, test setup, test conditions, and test method. This procedure may be used for other fuel system components, by testing in conjunction with the pump, which normally supplies the component inlet flow, or a substitute test pump of similar capacity. This procedure may be used, with variations in test conditions and test fluid, for performing pump evaluation tests. Tests at progressively increasing pump speeds and pressures will provide design limitation data. Alternate test periods on a test pump and another pump, of a design for which actual service durability is known, will provide useful comparison data.
AE-5B Aircraft and Engine Fuel and Lubricant Sys Components
Items per page:
1 – 50 of 4355