Browse Topic: Aged
With an increase in the elderly and aging population and also in the number of invasive surgeries, wound healing has become a critical focus area in medicine. The complex bodily processes involved in wound healing make it challenging as well as rewarding to identify newer methods and materials for effective wound healing
A cochlear implant enables people with severe hearing loss to hear again. An audiologist adjusts the device based on the user’s input, but this is not always easy. Think of children who are born deaf or elderly people with dementia. They have more difficulty assessing and communicating how well they hear the sounds, resulting in an implant that is not optimally tuned to their situation
The road freight transport sector is one of the main responsible for the air pollution (as the case of particulate matter) and greenhouse gases emissions worldwide. Different types of fuel technologies have been developed in order to improve efficiency, reduce air pollution impacts, such as the case of liquefied natural gas (LNG) for heavy-duty vehicles. Many studies show the relationship between the effects of short and long-term exposure to particulate matter (PM) and, according to the World Health Organization (WHO), premature deaths worldwide as well as cardiorespiratory diseases in elderly population are related to this pollutant. In this context, this paper aims at evaluating the atmospheric dispersion of PM in a stretch of a highway (Anhanguera-Bandeirantes) in the São Paulo State in Brazil due to the road freight transport considering the use of diesel and LNG in heavy-duty vehicles and the impacts on human health. The software AERMOD designed by U.S. Environmental Protect
This report identifies the reasons for, and results associated with, the conduct of a flight simulation research project evaluating the effect of low powered laser beam illumination of pilot crewmembers operating in the navigable airspace. This evaluation was primarily concerned with the possible degradation of pilot performance when illuminated by a laser while operating in an airport terminal area where pilot workloads are normally at their maximum
The Elderly Female Dummy (EFD) is an omni-directional ATD developed to represent a vulnerable population. The EFD it is able to be 3D printed and quickly altered to meet design requirements. A recent side impact sled test series suggested that small, elderly females may be at risk of thoracic injuries in side impact crashes due to combined loading from the belt pre-tensioner and side airbag. The EFD was altered to add four IR-TRACCs to the thoracic region to allow both x-axis and y-axis displacement to be evaluated in a similar test. While the IR-TRACCs did record the displacement due to combined loading, the rate of displacement and timing of the peak displacements did not match external chestband outputs. The next step for the EFD is to revise the locations of IRTRACCs in the thorax and begin component testing in lateral and frontal directions to improve thoracic biofidelity
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks. The
Technology is transforming many aspects of the healthcare industry, and the patient care experience is an important facet of the healthcare ecosystem. With the advent of the Internet of Things (IoT) and adoption of health-focused wearables, patient care technology has become increasingly complex while at the same time allowing for greater efficiency. As IoT adoption has grown exponentially across the consumer and business landscape, these new technological solutions are being adapted to help those seeking better medical care take a proactive role in their health and overall well-being. These new devices are making healthcare more efficient while enabling an improved patient experience
IoT (Internet of things) is considered most innovative technology in smart healthcare monitoring system which is able to show real-time physiological parameters feed data to web cloud, analysis using machine learning, artificial intelligence and big data. Stroke is most deadly diseases and real-time monitoring is desired to detect stroke onset during regular activities. The aim of our study is to develop a Real-time health monitoring system for elderly drivers using air cushion seat and IoT devices in order to detect stroke onset during driving. We have also made a prototype of brain stroke detection system using Quad-chamber air cushion system and IoT devices. This system can measure ECG, EEG, heart rate, seat pressure balance data, face/eye tracking etc. using IoT sensors, compare real-time data with reference data, predict abnormality, generate alarm and send message to relatives and emergency services if any stroke onset happens in order to provide emergency assistance to driver
Fine-grained human motion tracing — the ability to trace the trajectory of a moving human hand or leg, or even the whole body — is a general capability that is useful in a wide variety of applications. It can be used for gesture recognition and virtual touch-screens (e.g. Kinect-style natural user interfaces), activity recognition, monitoring of young infants and the elderly, or security applications such as intruder detection. Motivated by these applications, depth-sensing-based systems have been developed to implement motion tracing capabilities in cameras; however, these devices are limited because they have a constrained field of view (around 2 to 4 m range with a 60-degree aperture), and do not work in non-line-of-sight scenarios, preventing their use in many applications such as whole-home activity recognition, security, and elderly care
Driving is a complex activity with the continuously changing environment. Safe driving can be challenged by changes in drivers’ physical, emotional, and mental condition. Population in the developed world is aging, so the number of older drivers is increasing. Older drivers have relatively higher incidences of crashes precipitated by drivers’ medical emergencies when compared to another age group. On the elderly population, automakers are paying more attention to developing cars that can measure and monitor the drivers’ health status to protect them. In recent years, the automotive industry has been integrating health, wellness, and wellbeing technologies into cars with Internet of Things (IoT). A broad range of applications is possible for the IoT-based elderly smart healthcare monitoring systems. For example, smart car, smart home, smart bed, etc., Both luxury automakers and key global original equipment manufacturers are integrating healthcare services into their next-generation
Scientists at NASA’s Glenn Research Center have successfully developed a novel subcutaneous structure imager for locating veins in challenging patient populations, such as juvenile, elderly, dark-skinned, or obese patients. Spurred initially by the needs of pediatric sickle-cell anemia patients in Africa, Glenn’s groundbreaking system includes a camera-processor-display apparatus and uses an innovative image-processing method to provide two- or three-dimensional, high-contrast visualization of veins or other vasculature structures. In addition to assisting practitioners to find veins in challenging populations, this system can also help novice healthcare workers locate veins for procedures such as needle insertion or excision. Compared to other state-of-the-art solutions, the imager is inexpensive, compact, and very portable, so it can be used in remote third-world areas, emergency response situations, or military battlefields
Japan is suffering from the problem of an ageing society. In Kitakyushu city more than a quarter of people are aged above 65 years. The roads in this region are narrow with steep gradient and vulnerable roadbed. A big ratio of elderly people are living on their own. These characteristics make driving unsuitable. The problem is magnified by infrequent public transportation. A need-assessment survey for an autonomous vehicle at a community event suggested the applicability of small electric vehicle Toyota COMS. The vehicle is then equipped with features like automatic driving and platooning. The autonomous drive system is built to develop an intelligent transport system (ITS) using various sensors and actuators. Stereo camera and ultrasonic sensors were used to get a judgment of obstacle. Google earth and GPS were used to generate the target path using the Bezier curve method and optimized route is chosen. IMU is used for calculation of vehicle position to make a compensation about the
The world is aging rapidly. Many countries can already be categorized as aging or aged societies while a few are becoming super-aged societies. In Thailand as well as in other countries, traffic accidents caused by elderly drivers will continue to rise as a significant percentage of elderly people still prefer to drive. Accidents may be prevented with driving tests and screening methods for elderly drivers. However, it is also necessary to understand the effect of aging on driving ability. With this understanding, driver training, driver assistant systems, and improvements on infrastructure may be designed accordingly. Among various physical changes, cognitive ability of the brain is one of the most significant factors affecting driving ability. In this paper, correlation between various cognitive functions of the brain and car following skill of drivers are considered. Car following skill was chosen because rear-end collisions are some of the most frequent type of accidents in
Using a portable device developed at Drexel University, researchers at Albert Einstein College of Medicine have identified differences in brain activation patterns associated with postural stability in people with Parkinsonian syndromes and healthy adults. The findings describe the critical role of the prefrontal cortex in balance control and may have implications with respect to detecting and treating Parkinsonian symptoms in the elderly
The aging population is a growing concern as the increased fragility and frailty of the elderly results in an elevated incidence of injury as well as an increased risk of mortality and morbidity. To assess elderly injury risk, age-specific computational models can be developed to directly calculate biomechanical metrics for injury. The first objective was to develop an older occupant Global Human Body Models Consortium (GHBMC) average male model (M50) representative of a 65 year old (YO) and to perform regional validation tests to investigate predicted fractures and injury severity with age. Development of the GHBMC M50 65 YO model involved implementing geometric, cortical thickness, and material property changes with age. Regional validation tests included a chest impact, a lateral impact, a shoulder impact, a thoracoabdominal impact, an abdominal bar impact, a pelvic impact, and a lateral sled test. The second objective was to investigate age-related injury risks by performing a
In the elderly population, rib fracture is one of the most common injuries sustained in motor vehicle crashes. The current study was conducted to predict the biomechanical fracture responses of ribs with respect to age, gender, height, weight and percentage of ash content. Three-point bending experiments were conducted on 278 isolated rib samples extracted from 82 cadaver specimens (53 males and 29 females between the ages of 21 and 87 years) for 6th and 7th levels of ribs. Statistical analyses were carried out to identify differences based on age and gender. It was found that, in comparison to males, females had significantly lower values for maximum bending moments, slopes of bending moment-angle curves, and average cortical-bone thickness (p < 0.05). Samples of ribs taken from elderly specimens failed at lower values of fracture moments than those from younger specimens, and had lower slopes of bending moment-angle curves, both in males and females (p < 0.05). The generalized
A common result of aging is a decline in peripheral vision. This study provides a preliminary feasibility analysis of an improved method for alerting drivers of oncoming traffic in blind-spots. Luminescence with an intuitive color-scheme is used as the primary stimulus to permeate a wider field of useful vision than that of existing technology in use today. This method was developed based on concepts of affordance-based design through its adaptation to address specific cognitive and visual acuity challenges of the elderly. The result is an improved, intuitive technique for hazard alert that shows significant improvement over existing technology for all age groups, not just the elderly
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR. Cadavers were instrumented with strain gages at the posterolateral, lateral, and anterolateral
The present study clarifies the mechanism by which an accident occurs when an elderly pedestrian crosses a road in front of a car, focusing on features of the central and peripheral vision of elderly pedestrians who are judging when it is safe to cross the road. For the pedestrian's central visual field, we investigated the effect of age on the timing judgment using an actual car. The results for daytime conditions indicate that the elderly pedestrians tended to make later judgments of when they crossed the road from the right side of the driver's view at high car velocities. At night, for a car with its headlights on high beam, the average car-pedestrian distances of elderly pedestrians on the left side of the driver's view were significantly longer than those of young pedestrians at velocities of 20 and 40 km/h. The eyesight of the elderly pedestrians during the day did not affect the timing judgment of crossing a road. At night, for a car with its headlights on either high or low
According to the “Report 2010” of the Association des Constructeurs Européens de Motocycles (European motorcycle manufacturers' association), the number of motorcycles throughout the European Union rose from 16 million to more than 22 million between 2001 and 2008. Taking all two-wheeled motor vehicles into account, in 2008 approximately 33 million vehicles were registered. At the same time, motorcycles are by far the most dangerous means of transport. Two groups (children and elderly people) are especially vulnerable due to their weakness against impact, reflexes and reaction to risk, resistance to the generated forces, etc. According to the latest accidents data from the European Community database on road accidents (CARE), more than 110 children under 14 years old who were passengers on PTW's were killed on the roads of the Community between 1991 and 2000. The European Commission is not aware of any specific national standard in the Member States apart from requiring the use of
The number of elderly drivers is increasing in Japan and ensuring the safety of elderly drivers is becoming an important issue. The authors previously conducted an analysis of the characteristics of accidents and traffic violations by elderly drivers based on the number of accidents in which they were rear-ended. This method was used in order to exclude the influence of driving frequency. As a result of that analysis, it was found that the likelihood of violations committed by elderly drivers was not particularly higher than in other age groups, while the likelihood of accidents caused by them was higher. The risk of causing an accident was judged to be about two times higher in elderly drivers than in the 35-44 year age group. However, the methodology presupposed that collisions in which a driver is rear-ended are accidents that occur randomly, and that they occur with the same probability in each age group. To verify the results of that study, we attempted a new analytical method
The high frequency of fatal head injuries of elderly people in traffic accidents is one of the important issues in Japan. One of the causes may be vulnerability of the aged brain. While a human head/brain FE model is a useful tool to investigate head injury mechanism, there has not been a research result using a model considering the structural and qualitative changes of the brain by aging. The objective of this study was to clarify the generational difference of intracranial responses related to traumatic brain injuries (TBI) under impact loading. In this study, the human head/brain FE models in their twenties (20s) and seventies (70s) were used. They were developed by reflecting the age-specific characteristics, such as shape/size and stiffness of brain matter and blood vessels, to the baseline model developed by Global Human Body Models Consortium (GHBMC) LLC. The generational difference of intracranial responses related to TBI, such as cumulative strain damage measure (CSDM
Corresponding to the increasing need for the protection of elderly people from traffic accidents, the authors have been developing age-specific human FE models capable of predicting body kinematics and skeletal injuries for younger adult (35y.o.) and the elderly (75y.o.). The models have been developed and validated part by part referring to the literature and then integrated into whole bodies. Validation had been conducted in order of single bones, components and whole body. Whole body kinematics in frontal impact had been validated against the PMHS frontal belt restrained sled tests series, resulting in good biofidelity scores. In this study, the models were validated for lateral impact. The models were validated against several impact tests of body regions from ISO-TR9790 and against recently published full scale lateral sled tests for whole body kinematics. In most cases, the results showed good biofidelity of the models. Capability of the rib fracture prediction was also discussed
The number of elderly drivers has been increasing in Japan with the rapid progress of the nation's population aging. Securing safety for elderly drivers is an important issue in Japan. In this paper, authors conduct analysis on characteristics of accidents and violations caused by elderly drivers based on data for 2009. As there is a tendency that elderly drivers generally have less opportunity to drive vehicles than younger drivers do, it is necessary to conduct this analysis considering driving frequency when making comparison among age groups. Then, we calculated the normalized ratio (odds ratio) based on the number of rear-ended accidents in order to exclude the influence of driving frequency. As a result of the analysis, it was found that the likelihood of violations committed by elderly drivers was not particularly higher, while the likelihood of accidents caused by them was higher than younger drivers. The risk of causing an accident was judged to be about two times higher in
Recently, the global increase of elderly vehicle users has become an issue to be considered in the effort of enhancing safety performance of vehicle restraint system. It is thought that an evaluation tool for the system representing properties of age-specific human body will play a major role for that. In previous research, the authors had developed age-specific component finite element (FE) models for the lower limb, lumbar spine, and thorax representing the adult and elderly occupants. However, the models have not been validated in terms of full body kinematics. It is essential for such models to be validated in terms of full body kinematics in order to ensure validity of the results of the assessment of the safety performance of restraint systems. In the present research, the adult and elderly occupant full body FE models were developed by incorporating the lower limb, lumbar spine and thorax of the adult and elderly FE models established in previous research. To represent the
Items per page:
50
1 – 50 of 90