Browse Topic: Lubricant viscosity

Items (262)
In recent years, world-wide automotive manufacturers have been continuously working to improve the fuel efficiency of IC engine and valve train friction contribute up to 30% of overall friction loss. Oil viscosity plays an important role in reducing overall engine friction, but it adversely affects the function of Valve train in terms of wear and reliability. Now a days HLA/RFF type (Type-II) valve train is mostly used in Internal Combustion engine to reduce friction and automatic lash adjustment. HLA (hydraulic lash adjuster) plays a crucial role in the RFF/HLA type valvetrain in IC engine. Understanding the valve train dynamic behavior due to HLA is essential for engine designers to improve engine performance and durability. The study aims to accurately predict the behavior of Hydraulic lash adjuster under various operating conditions using multibody dynamic simulation approach. Most significant concern in HLA operation is potential occurrence of “Valve pump up”, an undesired
Chandiok, PrateekPoonia, SanjayKundu, SoumenBharti, Anil Kant
ABSTRACT The Department of Defense is a major consumer of petroleum products – over 700 million gallons per day. While the majority of fuel consumed is for aircraft, in terms of logistics and exposure of personnel to hazardous conditions, the amount of fuel consumed in ground vehicles is considerable, with the cost (in-theatre, delivered) ranging from $100 to $600/gallon. This paper addresses the impact that parasitic friction mechanisms (boundary lubrication and lubricant viscosity) have on engine friction and overall vehicle efficiency. A series of mechanistic models of friction losses in key engine components was applied to investigate the impact of low-friction technologies on the fuel consumption of heavy-duty, on-road vehicles. The results indicate that fuel savings in the range of 3 to 5% are feasible by reducing boundary friction and utilizing low-viscosity engine lubricants. The paper will discuss the implications of the studies (as performed for commercial heavy-duty trucks
Fenske, G. R.Erck, R. A.Ajayi, O. O.Masoner, A.Comfort, A. S.
ABSTRACT The Single Common Powertrain Lubricant (SCPL) program is seeking to develop an all-season (arctic to desert), fuel-efficient, multi-functional powertrain fluid with extended drain capabilities. To evaluate candidate lubricants for the purpose of fuel consumption effects, a test cycle was developed using the GEP 6.5L(T) engine found in the HMMWV. Field data collected at Ft. Hood, TX was used to determine a set of speed, load and temperature points which could be reproduced consistently in test-cell operation. These points were condensed into a 14-mode cycle for use within the SCPL program. In addition to fresh condition oil, some lubricants were evaluated at end-of-life drain conditions to determine consumption effects over time. Results from the program indicated a significant fuel consumption benefit with lower viscosity lubricants when compared to current in-use military engine oils
Warden, RobertHansen, GregoryComfort, Allen
The American Petroleum Institute’s (API) Single Technology Matrix (STM) is a data-based, Virtual Testing process and protocol (utilizes test data, characteristics and features of base stocks and blends coupled with statistical methods and analysis) used to predict the performance capability of a specific engine oil additive technology in a single specified base oil, in a given engine test. The concept was first introduced in 2002, codified and implemented by API in 2007, and updated in 2022. The previously published advantages of STM in the proof-of-performance of engine oils, remain relevant. These advantages include a data space focused on interpolation, documented statistical analysis protocol, limitation to a specific formulation, flexibility in understanding complicated, interactive, or non-linear technology and base oil relationships, and timeliness. There have been numerous changes to, and in, the engine oil industry since the introduction of STM in 2007. These include advances
Zielinski, ChristineScinto, PhilipChen, MinGibbons, GreerBaker, Charles
We introduce novel approaches utilizing Physics Informed Machine Learning (PIML) for advanced diagnostics & prognostics of ground combat vehicles (CV). Specifically, we present the development of a PIML model designed to predict the health of engine oil in diesel engines. The condition of engine oil is closely linked to engine wear, thus serving as a crucial indicator of engine health. Our model integrates a physics-based simulation of engine wear in diesel engines, leveraging a time history of engine oil viscosity and engine speed as key input parameters. Furthermore, we conduct uncertainty quantification to assess the impact of varying parameters on engine oil health prediction. Additionally, our model demonstrates the capability to enhance low-fidelity physics models through the integration of a limited set of experimental data. By combining data-driven techniques with physics-based insights, our approach offers enhanced diagnostics and prognostics capabilities for ground combat
Betts, Juan F.Alizadeh, Arash
A bearing is a mechanical component that transmits rotation and supports load. Depending on the type of rotating mechanism, bearings are categorized into ball bearings and tapered-roller bearings. Tapered-roller bearings are superior to ball bearings in load-bearing capabilities. They are used in applications where high loads, such as, the wheel bearings for commercial vehicles and trucks, aircraft, high-speed trains, and heavy-duty spindles for heavy machinery must be supported. The demand for reducing the friction torque in automobiles has recently increased owing to carbon-emission regulations and fuel-efficiency requirements. Therefore, research on the friction torque of bearings is essential; studies have been conducted on lubrication, friction, and contact in tapered-roller bearings. There have also been studies on lip friction, roller misalignment, and so on; however, research on the influence of roller geometries and material properties is scarce. This study investigated the
Lee, SeungpyoAn, Hyun Gyu
This study examined the effects of lubricant viscosity and metallic content on the oxidation reactivity of diesel particles. In the first part, the factors affecting thermogravimetric analysis (TGA) experiments was discussed and confirmed. The influences of initial soot mass, heating rate, and airflow rate on soot oxidation rate and experimental reproducibility were investigated to develop an optimized TGA method. On the basis of these experiments, an initial soot mass of 2.0 mg, airflow rate of 4.8 L/h, and heating rate of 2.5°C/h were used for all subsequent TGA tests. It could be found that the TGA experiments had high repeatability, and the differences were less than 0.1%. In the second part, a four-cylinder diesel engine was lubricated with seven kinds of lubricant with different viscosity and metallic content by the use of viscosity index improver (VII), antioxidant and corrosion inhibitor (ACI), and ashless dispersant (AD). Particle samples were subjected to TGA to test their
Meng, HaoYang, HeZhang, WeiliXing, JianqiangXu, YanWang, Yajun
Sustainability has evolved from being just a niche engagement to a fundamental necessity. The reduction of carbon emissions from aspects of human activity has become desirable for its ability to mitigate the impact of climate change. The Transportation industry is a critical part of the global economy – any effort to curb emissions will have a significant impact on CO2 reduction. Engine lubricant can play an efficient and key role to enhance powertrain performance that have undergone significant hardware changes to reduce emissions. As part of a significant collaborative programme between Tata Motors and Infineum, a new engine oil formulation SAE 5W-30 API FA-4 has been developed and commercially introduced for use in the modern Bharat Stage 6 Phase 2 engines. Introduction of SAE 5W-30 API FA-4 engine oil for Tata Commercial Vehicle application is a step towards delivering a sustainable option beyond improved fuel economy, longer drain interval and enhanced engine wear protection
Tyagarajan, SethuramalingamSingh, SamsherThanapathy, Saravana RajaBondre, SushilPollington, MarkLim, Pei YiMadan, Lalit
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact. This situation
Kushwaha, RakeshBhosale, VikasNavale, PradeepPatel, Hiral
Internal combustion engine vehicles are major contributors to many environmental and health hazardous emissions and sometimes consume more fuel. New regulations like Corporate Average Fuel Efficiency (CAFÉ) norms are coming up and demand lower emissions. Original Equipment Manufacturers (OEMs) are committed to bringing various technological advancements in Internal Combustion Engine (ICE)powered vehicles to maximize their efficiency. Hence it is important to reduce the loss and improve the fuel economy. This paper explains a new approach methodology used for reducing the gearbox drag by 5- 10 %. This improvement can significantly contribute to the overall efficiency improvement thus carbon footprints of vehicle getting reduced. The following optimization areas are considered for such improvements, 1 Deflector @ various locations 2 Lubrication oil viscosity change 3 Preload optimized for the benefit of the power/drag loss, 4 Oil quantity changes to improve the power loss 5 Top cover
Senthil Raja, T.K, Barathi RajaKumar, Aneesh
Micro-dimple is one of the promising surface texturing technologies to reduce friction loss due to the generation of thicker oil film caused by the cavitation occurrence around the micro-dimples. In this study, the flow behavior of oil film around micro-dimples was directly observed by laser-induced fluorescence (LIF). LIF observation for the oil flow showed that micro- dimples induced the cavitation occurrence that contributed to increase the oil film thickness. This was in good agreement with the results of the friction test, and it was thus proved that the cavitation occurrence by micro-dimples is significantly effective for the friction reduction
Sakai, MasanoriHirayama, TomokoYamashita, NaokiHatano, NaoyaTatsumi, KazuyaFujita, HideyukiKuragaki, Naoyoshi
Improving fuel efficiency is a major goal of the automotive industry. One approach is to lower an engine oils viscosity grade raising durability concerns and requiring engine re-design. Study [6] demonstrates that higher fuel efficiency is also achieved in the same SAE grade by increasing the Noack evaporation loss and using advanced viscosity index improvers like comb polymers. Increased Noack volatility might raise concerns of oil consumption. Evonik investigated this in a state-of-the- art engine using a test matrix including multiple Noack volatilities, SAE grades and base stocks. Additionally base oil viscosities and VII treat rate were investigated. All parameters showed no correlation with engine oil consumption. This allows to maximize fuel efficiency within the same SAE grade through optimized viscometric performance
Seemann, MichaelStrube, SabrinaHutchinson, PhilEisenberg, BorisMelchior, HelmutMarkwart, JensKempf, StephanieSchimmel, ThomasMori, Masahito
In order to confirm friction and fuel economy performance of engine oils, laboratory bench tests, motored engine tests and chassis dynamo tests with HEV under WLTP were conducted. The fuel economy improvement effect of reducing viscosity and MoDTC were confirmed under these tests. Moreover, MoDTC (std.) exhibited excellent fuel economy improvement effect compared to MoDTC (L) under low temperature condition particularly. Low viscosity oils formulated with MoDTC (std.) showed superior fuel economy performance even at HEV with relatively lower oil temperatures in this study
Takano, KoichiIino, ShinjiYamamoto, KenjiMoriizumi, Yukiya
The automotive industry is continuously looking to improve fuel economy in order to meet stringent government regulations around carbon emissions reduction. To achieve fuel economy targets, OEMs have explored lowering the viscosity of the engine oil to reduces energy losses. Many OEMs are currently designing engines that operate with 0W-20 viscosity engine oil and lower. Recently, ultra-low viscosity engine oil categories, such as JASO GLV-1, have been developed to further improve fuel economy through fluid design (reduction of friction of the engine oil). However, as the viscosity of the fluid is reduced, the fluid’s ability to control viscosity and wear is often also reduced. This paper details a holistic formulation approach to deliver improved fuel economy without compromising wear and oxidative viscosity control. Advanced fuel economy studies were conducted which combined simulated fuel economy modelling with a fired engine fuel economy test to provide fluid formulations with
Garelick, KenField, SamAnderson, William B.Engelman, KristiHoshino, Hidetaka
Future regulations have put increased focus on reducing criteria pollutant emissions, improving engine efficiency, and ensuring these benefits are maintained for the useful life of the equipment. Engine builders continue to require improved lubricants as enablers to meet these regulatory requirements. Most recently, these improvements have focused on lower engine lubricant viscosity, improved oxidative stability, and constraints on lubricant additives that interfere with emission control system performance. This study quantifies the synergistic benefits derived from combining a renewable base oil with ultra-low ash additive technology to improve fuel economy retention (FER). These benefits derive from their inherently low volatility and high oxidative stability, which limits lubricant thickening and deposits that would otherwise degrade fuel efficiency over the life of the lubricant. FER studies on a heavy-duty diesel test stand demonstrate 0.5 - 2.0 % advantage for the advanced
Patel, MihirBooth, JamesWhitacre, Shawn
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This SAE Information Report was prepared by the SAE Fuels and Lubricants Technical Committee for two purposes: (a) to assist the users of automotive equipment in the selection of axle1 and manual transmission lubricants for field use, and (b) to promote a uniform practice for use by marketers of lubricants and by equipment builders in identifying and recommending these lubricants by a service designation
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
We present a new method to predict the power losses in electric vehicle (EV) transmission systems using a thermally coupled gearbox efficiency model. Friction losses in gear teeth contacts are predicted using an iterative procedure to account for the thermal coupling between the tooth temperature, oil viscosity, film thickness, friction, and oil rheology during a gear mesh cycle. Crucially, the prediction of the evolution of the coefficient of friction (COF) along the path of contact incorporates measured lubricant rheological parameters as well as measured boundary friction. This allows the model to differentiate between nominally similar lubricants in terms of their impact on EV transmission efficiency. Bearing and gear churning losses are predicted using existing empirical relationships. The effects of EV motor cooling and heat transfers in the heat exchanger on oil temperature are considered. Finally, heat transfer to the surroundings is accounted for so that the evolution of
Shore, Joseph F.Christodoulias, Athanasios I.Kolekar, Anant S.Lockwood, Frances E.Kadiric, Amir
The engine power cylinder is comprised of the piston, piston rings, and cylinder. It accounts for a significant amount of total engine friction within reciprocating, internal combustion engines. Reducing power cylinder friction is key to the development of efficient internal combustion engines. However, isolating individual power cylinder tribocouples for detailed analysis can be challenging. In this work, a new reciprocating liner test rig is developed and introduced. The rig design is novel, using a stationary piston and a reciprocating cylinder liner. Friction is calculated from the force measured in the connecting rod which supports the piston. The rig allows for independent control of peak cylinder pressure, speed, and lubricant temperature. Using the newly developed test rig, several technologies for friction reduction are evaluated and compared. Friction reducing technologies include the use of a low-friction TiSiCN nanocomposite coating applied to the piston rings, a lubricant
Bachu, PruthviMichlberger, AlexanderBitsis, Daniel Christopher
On urban and emission homologation cycles, engines operate predominantly at low speeds and part loads where engine friction losses represent around 10% of the consumed fuel energy but would account for 25% of the fuel consumption once combustion efficiency is taken into account. Under such mild conditions, engine and engine oil temperatures are also lower than ideal. The influence of oil viscosity on friction losses are significant. By reducing lubricant viscosity, engine friction, fuel consumption and emissions are reduced. Tribological and machine learning models were investigated to predict the effect of oil viscosity on fuel consumption during the FTP75 emission cycle with the use of detailed actual emission test measurements. Oil viscosity was calculated with the measured oil temperature. As the same vehicle transient is followed in the cold and hot phases, the models were evaluated by comparing their prediction of fuel consumption in the hot phase versus the measured value. The
Tomanik, EduardoTomanik, VictorMorais, Paulo
One of the first tasks while designing pistons is to ensure the reliable engine operation with minimal friction losses. This is possible by ensuring the liquid friction in the piston-cylinder junction during the entire operating cycle. Therefore, it is important to assess the nature of friction in the piston-cylinder conjunction. This task can be broken down into a number of interrelated subtasks: determining the characteristics of the piston lateral movement, determining the piston deformations under thermal and mechanical loads, and calculating the hydrodynamic forces acting from the side of the oil layer in the conjunction. The use of software packages that solve these problems separately and their inclusion in the iterative process will lead to huge expenditures of computing time and is difficult to implement in carrying out design optimization problems. The authors have developed a mathematical model for the joint solution of the above problems, and carried out computational
Smirnov, SergeiVorobyev, AlexanderZaev, Ivan
The piston assembly is the major source of tribological inefficiencies among the engine components and is responsible for about 50% of the total engine friction losses, making such a system the main target element for developing low-friction technologies. Being a reciprocating system, the piston assembly can operate in boundary, mixed and hydrodynamic lubrication regimes. Computer simulations were used to investigate the synergistic effect between low viscosity oils and cylinder bore finishes on friction reduction of passenger car internal combustion engines. First, the Reynolds equation and the Greenwood & Tripp model were used to investigating the hydrodynamic and asperity contact pressures in the top piston ring. The classical Reynolds works well for barrel-shaped profiles and relatively thick oil film thickness but has limitations for predicting the lubrication behavior of flat parallel surfaces, such as those of Oil Control Ring (OCR) outer lands. In these cases, a deterministic
Tomanik, EduardoProfito, Francisco J.Tormos, BernardoJiménez, Antonio J.Zhmud, Boris
This SAE Standard defines the limits for a classification of engine lubricating oils in rheological terms only. Other oil characteristics are not considered or included
Fuels and Lubricants TC 1 Engine Lubrication
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
Reduction of fuel consumption and pollutant emissions are key factors in the current development of powertrains. Engine oil has proven to be an efficient lever for improving fuel economy. The full potential of a low viscosity lubricant could be achieved by a shift towards formulations with low viscosity, high volatility base oils. However, there is a concern that this might increase oil consumption and limit long oil drain intervals. This article deals with the engine lubricant contribution to oil and particle emissions. A series of 0W-12 oil prototypes have been evaluated both within laboratory measurements and on a modern turbocharged direct injection gasoline engine. Correlation between oil emission and engine oil properties will be presented. The impact of engine oil on particle emissions has also been investigated under different engine operating conditions. A focus on particle size distribution demonstrates the relevance of transient driving conditions to the formation of
Paoloni, FrancoisBurette, GautierGohl, MarcusLensch-Franzen, ChristianHolzmüller, Jan
Vibration problems in internal combustion engines produce premature wear on the internal components of the engine, which contributes both to reduce the lifespan of the engine itself as well as cause discomfort to the occupants of the vehicle. Thus, since it is impossible to totally eliminate vibrations from engines, it is important to understand the sources of vibration production and control them to acceptable levels. The general objective of this paper is to measure the vibration in the areas that undergo greater efforts due to the processes of combustion and mechanical forces. These areas are the fixed bearings located to the extremes of the crankshaft. The specified objective of this study is to correlate these levels of crankshaft engine vibration relative to the fuel used, ethanol and gasoline, and assess the influence of lubricant oils on the vibration levels as a function of the viscosity of the lubricant. The results demonstrated that the vibration intensity of the engine
Santana, Claudio MarcioMautone, JoseGutierrez, JuanAlmeida Junior, Hélder
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry towards more sophisticated vehicle thermal management systems to best utilize the waste heat and improve driveline efficiency. The final drive unit in light and heavy duty trucks usually consists of geared transmission and differential housed in a lubricated axle. The automotive rear axle is one of the major sources of power loss in the driveline due to gear friction, churning and bearing loss affecting vehicle fuel economy. These losses vary significantly with lubricant viscosity. Also the temperatures of the lubricant are critical to the overall axle performance in terms of power losses, fatigue life and wear. In this paper, a methodology for modeling thermal behavior of automotive rear axle with heat exchanger is presented. The proposed model can be used to predict the axle lubricant temperature rise. It also can be used to study the effect of coolant temperature on the axle
Nahid, MohammadSaha, JoydipRahman, Sadek
Published motorcycle lubricant research often focuses on developments to meet certain specifications, regulatory requirements, or a combination of the two. Seemingly missing from the literature is research where the primary goal is development of a lubricant that enables maximum torque, power and acceleration from a machine for the purpose of winning races. The present study combines the two areas of research, where a high-performance motorcycle engine oil platform is developed to be used in competition, while simultaneously meeting the necessary regulations and specifications to be useful for commuters and leisure riders alike. Well-known are the demands on a motorcycle oil, which must lubricate and protect the crankcase, clutch and gears, all of which have competing requirements such that a strategy to improve the performance in one area can cause a detriment in another. Formulating for racing engines that are typically much more powerful than production versions further exacerbates
Marcella, MikeJohnson, Aaron
There is still a need in the industry for engine oils that have low viscosities to improve vehicle fuel efficiency but also protect engines from wear. Viscosity modifiers (VMs) are chief additives responsible for adjusting the viscometric characteristics of automotive lubricants. Most notably, VMs have a significant impact on a lubricant's viscosity-temperature relationship as indicated by viscosity index (VI), cold cranking simulator (CCS) viscosity, and high temperature high shear (HTHS) viscosity of engine oils. Functional copolymers bearing branched, linear, or anti-wear functionalities have been synthesized and evaluated for viscometric and wear protection performance. The resulting polymers improved tribofilm formation, shear stability and CCS viscosities. Indirect benefits including Noack improvement and trim oil reduction were observed
A., CarranzaS., JiangM. T., DevlinB., SheldonK., HuxC., WalkerW., Wyatt
Designing fuel economy lubricants is an art; finding the right balance between fuel economy and durability requirements is complex, with many trade-offs. To open new formulation spaces with ever increasing fuel economy, a deep understanding of how lubricating oils respond to different drive cycles, engine/transmission type and any coating properties, e.g. DLC, is required. In this paper, we describe how the implementation of WLTC requires lubricant optimization to deliver improved fuel economy under this test cycle and therefore, lubricant viscosity reduction becomes more important. We also illustrate optimization of the sludge system is key to reducing overall viscosity of lubricants for ultra low viscosity application, such as in SAE 0W- 8 viscosity grade oils. To meet the cleanliness challenges in an SAE 0W-8 environment, we describe a developmental sludge handling system with improved cleanliness at constant viscosity to conventional SAE 0W-8 lubricants. A SAE 0W-8 demonstration
Matsui, TsuyoshiFeatherstone, ThomasWright, Peter
The aim of this study is to investigate how lubricants used for transaxles in hybrid electric vehicles (HEVs) and electric vehicles (EVs) give an impact on the cooling performance for electric motors. As a result, reducing lubricant viscosity improve heat transfer in both natural and forced convection conditions. Quantitative analysis could reveal that kinetic viscosity and heat conductivity of fluids are highly influential on the cooling performance. In addition, we investigated the effect of lubricant additive on fatigue life in bearing components by using a thrust needle roller bearing tester. Extreme pressure agent could control a morphology of the bearing raceway surface, playing a role in extending a fatigue life of the bearing
Narita, KeiichiTakekawa, Daisuke
Applying friction modifier (FM) in low viscosity engine oil is one well known cost effective approach for improving a fuel economy of vehicles. At first, the characteristics and mechanisms of FMs on tribological phenomena were studied with surface analysis technics. The performance of FMs was also evaluated with engine component test and motored engine test to understand the friction property of FMs in engine application. Then the effect of driving cycle, lubricant viscosity and FMs in fuel economy performance under chassis dynamo were studied. Among tested FMs, molybdenum dialkyl dithiocarbamate (MoDTC) was the most effective at boundary lubrication, which is considered significantly important friction area for WLTP, latest procedure for fuel economy test, with low and ultra-low viscosity engine oil
Yamamoto, KenjiHiramatsu, TsuyoshiHanamura, RyoMoriizumi, YukiyaHeiden, Sascha
This SAE Aerospace Information Report (AIR) establishes guidance for the specification of formulated lubricant properties which contribute to the lubricating function in bearings, gears, clutches, and seals of aviation propulsion and drive systems
E-34 Propulsion Lubricants Committee
This specification covers the requirements for a refined paraffinic petroleum-base lubricant
AMS B Finishes Processes and Fluids Committee
This SAE Standard defines the limits for a classification of automotive gear lubricants in rheological terms only. Other lubricant characteristics are not considered
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This test method provides procedures for exposing specimens of elastomer material (slab form) representative to those used in gas turbine engines to aviation lubricants under extended duration and engine relevant thermal conditions. For AS5780 requirements the time is at least 1800 hours and temperatures are 100 °C to 160 °C. Positive volume change is an indication of specimen swell and subsequent negative volume change is an indication of specimen deterioration, both properties are important in the evaluation of the compatibility of the lubricant with elastomers used in the construction of the gas turbine
E-34 Propulsion Lubricants Committee
It has been revealed by researches that lubricant properties have a great effect on the low-speed pre-ignition (LSPI) frequency in downsizing turbocharged direct-injection engines which are developed for better fuel economy. Droplets of lubricant or lubricant-gasoline mixture are considered to be the potential pre-ignition sources. Those droplets fly into the combustion chamber and ignite the gasoline-air mixture. To study lubricant droplets fundamentally, a novel set of droplet auto-ignition system is designed based on a Dibble Burner for this experiment. Influences of metallic additive contents, viscosities, lubricant diluted with gasoline and waste lubricant on the ignition delay of droplets are investigated by testing 12 groups of lubricants or lubricant-gasoline mixture. The equivalent diameter of each droplet generated by micro-syringes is around 2.1 mm. The co-flow temperature varies from 1123 K to 1223 K, and the experiments are carried out at atmospheric pressure. The auto
Pan, KaifengDeng, JunChen, YongquanZhang, ErbaoXie, WeiQin, QiushiQu, ZongjuLi, Liguang
Legislation aimed at reducing carbon dioxide emissions is forcing significant changes in passenger car engine hardware and lubricants. Reduced viscosity lubricants can reduce friction levels and are therefore helpful to manufacturers seeking legislative compliance. MAHLE and Shell have worked together to determine the crankshaft, bearing and lubricant combination which minimizes friction with an acceptable level of durability. This paper describes the results of our joint simulation studies. MAHLE Engine Systems have developed in-house simulation packages to predict bearing lubrication performance. SABRE-M is a “routine” simulation tool based on the mobility method [1] curve fitting from the finite bearing theory to simulate the hydrodynamic lubrication in steady-state conditions. Whereas, SABRE-TEHL is a specialized simulation package used for performing Thermo-Elasto-Hydrodynamic Lubrication (TEHL) analysis of bearing systems. Predictions for bearing severity parameters allow more
Kalogiannis, KonstantinosDesai, PriyankaMian, OmarMainwaring, Robert
An instantaneous piston ring/liner friction model has been presented to estimate the minimum oil film thickness and power loss contributed by piston rings under hydrodynamic lubrication. The model is based on lubrication theory considering lubricant viscosity variation with respect to temperature. A numerical scheme is developed to solve Reynolds and load equilibrium equations simultaneously to obtain the cyclic variation of oil film thickness and power loss. The model considers the ring profile geometry, the ring mechanical properties and their effects on the tribological performance of piston ring. The relevant trends and relations between parameters are considered with relatively simple approach to compute the minimum oil film thickness and mechanical power loss. Besides, Design of Experiment (DOE) technique and ANOVA analysis are employed to determine the effect of influential parameters such as ring width, ring crown height, ring elastic properties and ring end gap on the average
Delprete, CristianaRazavykia, Abbas
The gearbox is the main component for adjustment of speed and torque in automotive powertrain systems. In this work, numerical simulations were conducted to analyze the effect of the gear tooth geometry on the slide-to-roll ratio (SRR) and friction coefficient along the gear engagement, as well as on the overall transmission efficiency. Simulations were carried out using the AVL Excite Power Unit software. Elastohydrodynamic theory was applied to model the lubricated contact conditions. This model considers lubricant viscosity and the entraining velocity, curvature and roughness of the contacting surfaces. The simulated system is based on a manual transmission model coupled to a differential and a rigid wheel driver, which imposes rotation and torque profiles to the gears. The radius of curvature of tooth profile and angular velocity of the gear were varied, while maintaining the same characteristics of the lubricating oil. Results indicate a correlation between the increase in the
Lima, A.O.Fukumasu, N.K.Profito, F.J.Souza, R.M. deMachado, I.F.
This index provides an overview of lubricants and symbols for the purpose of assisting the user in the identification of the appropriate product and relevant SAE specification. The aim is to better determine the best lubricant to be used for a particular application. If containers used for shipping lubricants are also to be marked, the same identification and symbols should be used. See also ISO 5169 Machine tools - Presentation of lubrication instructions
Fuel and Lubricants TC2 Industrial Lubricants
The greases have been classified according to the operating conditions under which they are used, because the versatile nature of greases makes it impractical to classify them according to end use. It will therefore be necessary to consult the supplier to be certain that the grease can be used in; for example, rolling bearings or pumped supply systems, and also concerning the compatibility of products (see Remarks in Table 1
Fuel and Lubricants TC2 Industrial Lubricants
This work develops a comprehensive thermohydrodynamic (THD) model for high-speed squeeze film dampers (SFDs) in the presence of lubricant inertia effects. Firstly, the generalized expression for Reynolds equation is developed. Additionally, in order to reduce the complexity of the hydrodynamic equations, an average radial viscosity is defined and integrated into the equations. Subsequently, an inertial correction to the pressure is incorporated by using a first-order perturbation technique to represent the effect of lubricant inertia on the hydrodynamic pressure distribution. Furthermore, a thermal model, including the energy equation, the Laplace heat conduction equations in the surrounding solids (i.e. the journal and the bush), and the thermal boundary conditions at the interfaces is constructed. Moreover, the system of partial differential hydrodynamic and thermal equations is simultaneously solved by using an iterative numerical algorithm. The proposed model is incorporated into a
Hamzehlouia, SinaBehdinan, Kamran
Items per page:
1 – 50 of 262