Browse Topic: Gear lubricants

Items (158)
Re-refining of used lubricating oil is an economically attractive and effective recycling method that contributes significantly to resource conservation and environmental protection. The effective re-refining process of used lubricating oil undergoes thorough purification to remove contaminants and to produce high yield and good quality base oil suitable for reuse in lubricant formulation. Used lubricating oils have various hazardous materials, these can be processed with safe and efficient methods required to recover high-quality base oil products. Typically, used lubricating oil is a mixture of various types of additives, base oils, and viscometric grades as per the different types automotive and industrial applications. Re-refined base oils can be re-used to produce lubricants such as industrial and automotive lubricants like passenger car motor oils, transmission fluids, hydraulic oils, and gear oils. API classified base oils into two categories namely mineral base oils API Group I
Maloth, SwamyJoshi, Ratnadeep S.Mishra, Gopal SwaroopSamant, Nagesh N.Bhadhavath, SankerSeth, SaritaBhardwaj, AnilPaul, SubinoyArora, Ajay KumarMaheshwari, Mukul
ABSTRACT Modern vehicles use various methods to improve traction. One way to control torque to the drive wheels and improve traction is the limited slip differential (LSD). These differentials prevent loss of traction in the event that a driving wheel loses grip. A popular arrangement is the clutch-type LSD. Clutch-type LSDs use alternating friction and reaction plates lubricated by gear oils with specific frictional properties that allow for smooth and quiet operation. It is essential that vehicles designed with LSDs use gear oils with the appropriate frictional characteristics, but each manufacturer relies on proprietary test methods to identify compatible gear oils for their LSDs. This lack of standardization limits the availability of compatible oils. To deal with this problem, the Army is developing a laboratory based test method using the SAE No. 2 friction test machine to identify fully formulated gear oils compatible with LSDs found in military equipment
Comfort, Allen S.Brandt, AdamThrush, Steven
ABSTRACT For existing vehicle fleets there are few ways to reduce fuel consumption that do not involve expensive retrofitting. Replacing standard lubricants with those that achieve greater efficiency through superior formulation is one practical and inexpensive way to reduce fleet fuel consumption. In an effort to identify axle lubricants that reduce fuel consumption, the U.S. Army has developed a stationary axle efficiency test stand and test procedure using data from vehicle testing and simulation. Test method developmental work was initiated using hardware representative of light and medium tactical vehicles. Results indicate that the stationary test stand can differentiate and map efficiency changes between lubricants. The test stand has been used to test fuel efficient axle lubricants, which proved to be in good agreement with prior vehicle testing. Stationary testing has been shown to offer a higher degree of accuracy than full-scale vehicle testing at lower cost
Comfort, Allen S.Brandt, AdamThrush, Steven
The gearbox is a crucial aggregate in a diesel truck. Gearboxes must work efficiently to get the job done properly and lubrication is vital to this efficiency. Lubricating oil is like the circulation system of a gearbox. If the oil levels fall too low, the gearbox will likely fail. Gearbox failure can lead to expensive repairs that could be prevented. Besides added costs due to replacement or repair, costs associated with a loss of production could be significant. These issues are why; it is important to understand the consequences of having low lubricant levels. Similarly, higher oil level creates higher churning losses, heating of the Gear oil and oxidation, reduction in efficiency and increased oil leaks. Understanding the functions of gearbox lubricating oil can help you choose the right quantity of prevent gearbox failures. The aim of the testing is to find the accurate level of oil required to lubricate the Gearbox properly without failure and to reduce from the current predicted
Lakshamanan, SundarKs, DhianeshwarG R, SantoshRamaswamy, Sarathkumar
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This SAE Information Report was prepared by the SAE Fuels and Lubricants Technical Committee for two purposes: (a) to assist the users of automotive equipment in the selection of axle1 and manual transmission lubricants for field use, and (b) to promote a uniform practice for use by marketers of lubricants and by equipment builders in identifying and recommending these lubricants by a service designation
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This SAE Standard defines the limits for a classification of automotive gear lubricants in rheological terms only. Other lubricant characteristics are not considered
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This study introduces a method to examine the flow path of the lubricant inside a transmission housing of a tractor. A typical gearbox has several loads bearing elements which are in relative sliding motion to each other which causes heat to be released. The major sources of friction as well as heat are the meshing teeth between gears (sun/planet, planet/ring & power/range drive gear), thrust washers, thrust bearings and needle roller bearings. The churning of oil performs the vital function of both lubricating these sliding interfaces and cooling these sources of heat, thereby preventing failure of the gearbox. In this paper, we have applied VOF multiphase flow model and sliding meshing to simulate the fluid flow during splashed lubrication within a mating gear box. Lubrication oil dynamics and oil surface interaction with the air is modeled using VOF multiphase approach. The gear motion is imparted through sliding mesh technique, it automatically reconfigures the mesh for the space
Santra, Tanmay SushantRaju, KumarDeshmukh, RahulGopinathan, NagarajanParadarami, UdayaAgrawal, Ayush
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
Dual-clutch transmission (DCT) output shaft 1 (OS1) mount position is higher than the transmission lubricant level. Needle bearings and idler gears on OS1-insufficient lubrication issues and the transmission lubrication system were investigated. In the design model, the transmission housing lubrication channel and oil guide component design were studied. For numerical analysis, the STAR-CCM+ software was used to simulate transmission internal complex oil-gas multiphase transient flow morphology that monitored the four bore oil churning volumes of OS1. Finally, lubrication test results affirm simulation predictions that idler gears, needle bearings, and synchronizer rings on OS1 obtain sufficient lubrication provided that a reliable method to inspect lubrication design functions is available
Cao, ZhanChen, YongSu, TingLiu, HaiZang, Libin
This index provides an overview of lubricants and symbols for the purpose of assisting the user in the identification of the appropriate product and relevant SAE specification. The aim is to better determine the best lubricant to be used for a particular application. If containers used for shipping lubricants are also to be marked, the same identification and symbols should be used. See also ISO 5169 Machine tools - Presentation of lubrication instructions
Fuel and Lubricants TC2 Industrial Lubricants
See Table 1. DAx fluids are mineral oil based, DPx fluids are polyalphaolefin based, and DEx are ester based
Fuel and Lubricants TC2 Industrial Lubricants
High-speed rotating gears are generally lubricated by spray lubrication. Lubricating oil is driven by high-speed rotating gear, and some lubricating oil will be excited into oil mist, so that the gears are in the gas-liquid mixed environment. In this paper, the computational fluid dynamics model of the spray lubrication cooling process is established based on the gear heat transfer behavior under the spray lubrication condition. The influence of different spray parameters on the liquid-solid two-phase convective heat transfer coefficient is obtained. On this basis, the accurate boundary conditions of gear temperature field calculation are analyzed by studying the heat transfer behavior of high speed gear spray lubrication. The calculation model of gear temperature based on spray lubrication is established, and the temperature field distribution of gear is obtained. Finally, the gear spray cooling test stand is set up, and the accuracy of the calculation method is verified by comparing
Wang, YanzhongSong, Guanhua
ISO 7745 shall be used for providing detailing, operational characteristics, advantages, disadvantages, and factors affecting the choice to be made among fire-resistant fluids. HFAE, HFC, HFDR, HFDU and HETG oils are covered in this specification. HFAS, HFB and HFDS fluids are not addressed
Fuel and Lubricants TC2 Industrial Lubricants
This SAE Standard defines the limits for a classification of automotive gear lubricants in rheological terms only. Other lubricant characteristics are not considered
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
For existing fleets such as the U.S. military ground vehicle fleet, there are few ways to reduce vehicle fuel consumption that don’t involve expensive retrofitting. Replacing standard lubricants with those that can achieve higher vehicle efficiencies is one practical and inexpensive way to improve fleet fuel efficiency. In an effort to identify axle gear lubricants that can reduce the fuel consumption of its fleet, the U.S. Army is developing a stationary axle efficiency test stand and procedure. In order to develop this capability, on-track vehicle fuel consumption testing was completed using light, medium, and heavy tactical wheeled vehicles following a modified SAE J1321 type test procedure. Tested lubricants included a baseline SAE 80W-90, a fuel efficient SAE 75W-90, and a fuel efficient SAE 75W-140. Vehicle testing resulted in reductions in fuel consumption of up to 2%. Using data collected during vehicle testing and data from vehicle simulations, a stationary axle efficiency
Brandt, AdamComfort, AllenFrame, Edwin
Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability. The main key technologies
Nakamura, YoichiroHorikoshi, MasahisaTAKEI, YasunoriOnishi, TakahiroMurakami, YasuhiroHewette, Chip
This paper describes the basic principles of extensional rheometry, and the successful application to a variety of automotive fluids, including gear lubricants, paints, and forming lubricants. These fluids are used under very complex flow fields containing strong extensional (elongational) components. While exact derivation of extensional viscosities involves sophisticated theories, the measurement of liquid filament break-up time can provide fruitful information. Gear lubes showed different break-up time according to the kinematic viscosities. Addition of viscosity modifier (acrylic copolymer) significantly increased the breakup time, whereas surfactants had little effect. Clearcoat paint sample increased the breakup time, perhaps due to the deterioration. The waxy stamping lubricant showed remarkable change in the extensional properties as the temperature is raised. The extensional data obtained showed the promise of the technique to understand the performance of these fluids in
Ohtani, HirokoEllwood, KevinPereira, GustavoChinen, ThiagoSelvasekar, Siddharthan
The paper investigates the oil flow through a multi plate clutch for a hydro-mechanical variable transmission under actual operating conditions. The analysis focuses on the numerical approach for the accurate prediction of the transient behavior of the lubrication in the gear region: the trade-off between prediction capabilities of the numerical model and computational effort is addressed. The numerical simulation includes the full 3D geometry of the clutch and the VOF multi-phase approach is used to calculate the oil distribution in the clutch region under different relative rotating velocities. Furthermore, the lubrication of the friction disks is calculated for different clutch actuation conditions, i.e. not-engaged and engaged positions. The influence of different geometrical features of the clutch lubricating circuit on the oil distribution is also determined. The results show the areas where poor lubrication occurs and extend the experiments where measurements are difficult to
Bassi, AndreaMilani, MassimoMontorsi, LucaTerzi, Stefano
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor
Mohan, BrijRedkar, Dinesh
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities. However, because scooter oils do not need to lubricate a wet clutch or protect
Marcella, MikeMichlberger, Alex
Scuffing is an instantaneous failure which occurs when the meshed gear flanks undergo adhesive wear under extreme operating temperatures at medium- or high-speed conditions. It is one of the common failures in transmission gears, which tend to operate under long-duty cycle hours. The tip and the root regions often experience higher contact pressures because of the loading and surface curvature. These higher pressures, coupled with higher sliding velocities and heat generation, make the tip and root regions in the gear susceptible to scuffing. Gear geometry, material composition and lubricant properties influence scuffing. A balanced gear tooth design with lower sliding velocities is often chosen as an approach to avoid scuffing. However, in the current scenarios of transmissions with high power density requirements, achieving a balanced gear tooth design is rare. Lubricants with higher viscosity avoid scuffing, but have adverse effects on the transmission efficiency. As per ISO 6336
Ganti, VenuDewangan, YogeshArvariya, SaurabhMadhavan, Shyamsananth
The need for advanced lubricants is increasing rapidly due to the current wide range of operational usage, i.e., high loads and speeds of motion between friction pairs, broader temperature range, and the overall requirements for increased reliability and service life of machinery. It is essentially important to develop specialized anti-friction and anti-wear materials that will help in preventing wear and decreasing friction, thereby saving fuel and electricity. Simultaneously, such materials are also expected to reduce vibration, noise and maintenance of machine parts. Thus, the research into extending the service life of such materials continues to be imperative. Nanoparticles (NPs) present a novel approach in this regard, as they can be used in lubricants in between two mating contact surfaces as a third body. When compared with the widely used conventional micro-particles for tribological applications, NPs have unique features owing primarily to their much higher specific surface
Mohan, NishantSharma, MayankSingh, RameshKumar, Naveen
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification
E-34 Propulsion Lubricants Committee
This document provides a method/procedure for specifying the properties of vulcanized elastomeric materials (natural rubber or synthetic rubbers, alone or in combination) that are intended for, but not limited to, use in rubber products for automotive applications. This document covers materials that do not contain any re-use; recycled; or regrind materials unless otherwise agreed to by manufacturer and end user. The use of such materials, including maximum % must be specified using a “Z” suffix. This classification system covers thermoset High Consistency Elastomers (HCE’s) only. Thermoplastic Elastomer (TPE) materials are classified using SAE J2558. Silicone Formed In Place Gasket (FIPG) systems such as Room Temperature Vulcanized (RTV) Silicones, and Liquid Silicone Rubber (LSR) systems are classified using ASTM F 2468
Committee on Automotive Rubber Specs
This index provides an overview of lubricants and symbols for the purpose of assisting the user in the identification of the appropriate product and relevant SAE specification. The aim is to better determine the best lubricant to be used for a particular application. If containers used for shipping lubricants are also to be marked, the same identification and symbols should be used. See also ISO 5169 Machine tools - Presentation of lubrication instructions
Fuel and Lubricants TC2 Industrial Lubricants
This paper presents an experimental study of external gear pump efficiency based upon an analysis of the Stribeck values. The volumetric, mechanical, and overall efficiencies of a variety of external gear pumps were measured under steady state conditions. Straight grade antiwear hydraulic fluids were evaluated at 50°C and 80°C. Stribeck values for mechanical, volumetric, and overall efficiency were compared to classic pump efficiency curves. The experimental curves for pump volumetric and overall efficiency were consistent with the classic pump efficiency model. Mechanical efficiency diverged from model behavior at low Stribeck numbers; declining at low speeds and high pressures as contact conditions transitioned from the hydrodynamic to the mixed-film lubrication regime. Lubrication of external gear pumps can be enhanced by using hydraulic fluids that optimize the Stribeck value. A simple expression for relating the Stribeck number to volumetric and mechanical efficiency is presented
Michael, Paul W.Khalid, HassanWanke, Thomas
The ASTM D6121 (L-37) is a key hypoid gear lubricant durability test for ASTM D7450-08 (API Category GL-5) and the higher performance level SAE J2360. It is defined as the ‘Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles’. Pass/fail is determined upon completion of the test by rating the pinion and ring gears for several types of surface distress, including wear, rippling, ridging, pitting, spalling and scoring. Passing the L-37 in addition to the other tests required for API Category GL-5 credentials, as well as the more strenuous SAE J2360 certification, requires in-depth formulating knowledge to appropriately balance the additive chemistry. This paper describes the results of ASTM D6121 experiments run for the purposes of better understanding gear oil durability. Two gear lubricants, differing only in the antiwear chemistry, were used: gear lubricant A was designed to pass the
McFadden, ChrisBarton, WilliamAkucewich, EdwardBlanazs, LisaHuston, MichaelVenhoff, WesSupp, James
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
See Table 1. DAx fluids are mineral oil based, DPx fluids are polyalphaolefin based, and DEx are ester based
Fuel and Lubricants TC2 Industrial Lubricants
This specification covers semi-fluid lubricant suitable for use in aircraft gearboxes and transmissions
AMS M Aerospace Greases Committee
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles
SAE IC Powertrain Steering Committee
ISO 7745 shall be used for providing detailing, operational characteristics, advantages, disadvantages, and factors affecting the choice to be made among fire-resistant fluids. HFAE, HFC, HFDR, HFDU and HETG oils are covered in this specification. HFAS, HFB and HFDS fluids are not addressed
Fuel and Lubricants TC2 Industrial Lubricants
This SAE Information Report was prepared by the SAE Fuels and Lubricants Technical Committee for two purposes: (a) to assist the users of automotive equipment in the selection of axle1 and manual transmission lubricants for field use, and (b) to promote a uniform practice for use by marketers of lubricants and by equipment builders in identifying and recommending these lubricants by a service designation
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This SAE Recommended Practice identifies general requirements for hydraulic fluids to be used for ship systems and equipment with respect to power transmission, lubrication, and passive applications. It also indicates the environmental limits within which the fluids shall perform their intended purpose satisfactorily and reliably. Characteristics of particular importance to ship systems and equipment are discussed
Ship Fluid Systems Committee
This AIR establishes guidance for the specification of formulated lubricant properties which contribute to the lubricating function in bearings, gears, clutches and seals of aviation propulsion and drive systems
E-34 Propulsion Lubricants Committee
This SAE Standard defines the limits for a classification of automotive gear lubricants in rheological terms only. Other lubricant characteristics are not considered
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
Items per page:
1 – 50 of 158