Browse Topic: Computational fluid dynamics (CFD)

Items (4,287)
This computational fluid dynamics (CFD) study examines the comfort parameters of an innovative air vent concept for car cabin interiors using a reduced order model (ROM) and proper orthogonal decomposition (POD). The focus is on the analysis of the influence of geometric and fluid mechanical parameters on the resulting jet, in particular on the deflection angle of the airflow and the total pressure difference along the outlet geometry. Different parameters of the investigated system, such as the surface orientation, the outlet height, the separator distance, and the separator height, lead to different effects on the airflow structure. The results show that changes in the air vent surface orientation are always accompanied by an increase in the deflection angle and the total pressure difference. In contrast, the variation of the outlet height ratio positively influences the deflection angle and the total pressure difference in terms of the requirements for air vent geometries. The study
Langhorst, SebastianMrosek, MarkusBoughanmi, NesrineSchmeling, DanielWagner, Claus
With the continuous upgrading of emission regulations for internal combustion engines, the nitrogen oxide treatment capacity of selective catalytic reduction (SCR) aftertreatment needs to be continuously improved. In this study, based on a prototype of SCR aftertreatment, the impact of the arrangement of key components in the SCR system (urea injector, mixer, and catalyst unit) on ammonia uniformity was investigated. First, parameterized designs of the urea injector, mixer, and SCR unit were conducted. Then, using computational fluid dynamics (CFD), numerical simulations of the established aftertreatment system models with different parameter factors were performed under a high-exhaust temperature and a low-exhaust temperature conditions to study the impact of each individual parameter on ammonia uniformity. Finally, an optimized solution was designed based on the observed patterns, and the optimized samples were tested on an engine performance and emission test bench to compare their
Jie, WangJin, JianjiaoWu, Yifan
This work focuses on the design and multi-parametric analysis of a designed propeller for a Pentacopter unmanned aerial vehicle (UAV). The basic and secondary design inputs, along with performance data like propeller diameter, pitch angle, chord length, and lift coefficient, are established using a standard analytical method. Approximately ten distinct airfoils, specifically NACA 2412, NACA 4109, NACA 4312, NACA 4409, NACA 4415, NACA 5317, NACA 6409, NACA 6412, NACA 23024, and NACA 25012, are evaluated over 13 Reynolds Numbers with the angle of attacks (AOA) of 20, varying from -5 to 15 degrees, for the purpose of detailed propeller design. The lift and drag coefficient values for ten distinct airfoils, utilizing a Reynolds number of 13 and 20 angles of attack, are obtained from the XFOIL software. Three sophisticated airfoils are selected from a pool of ten based on their high Lift-to-Drag (L/D) ratio performance. The selected airfoils with a high L/D ratio are NACA 6409, NACA 4109
Veeraperumal Senthil Nathan, Janani PriyadharshiniArumugam, ManikandanRajendran, MahendranSolaiappan, Senthil KumarKulandaiyappan, Naveen KumarMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
The integration of advanced horizontal axis turbines (HATs) into unmanned marine vehicles (UMVs) significantly enhances their operational efficiency by providing power sources. These vehicles, designed for diverse applications, require efficient power systems to operate autonomously over extended periods. The major disadvantages are limited battery life and energy storage capabilities that restrict the operational range and endurance of the UMVs. Utilizing HATs in UMVs provides a renewable energy source, reducing operational costs. This continuous power supply enhances mission capabilities and promotes energy independence, making them ideal for long-term missions. Thus, using Computational fluid dynamics (CFD) models, hydrodynamic and aerodynamic analyses were carried out. For the hydrodynamic scenario, a velocity of 10 m/s and for the aerodynamic case, 27.7778 m/s, were taken into consideration. It is concluded that the UMV with Stepped HAT modification can be effectively employed for
Gunasekaran, Durga DeviKannan, HaridharanSourirajan, LaxanaVinayagam, GopinathGnanasekaran, Raj KumarKulandaiyappan, Naveen KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Electric vehicles (EVs) are a clean, sustainable alternative to conventional internal combustion engines representing a paradigm shift in the transportation sector. Electric vehicles (EVs) have significantly improved in performance in battery technology. With the rapid proliferation of Electric Vehicles (EVs), effective Battery Thermal Management Systems (BTMS) are essential to ensure optimal performance and longevity of the battery packs. This study aims to investigating the effect of Phase Change Materials (PCM) in a hybrid cooling of liquid cold plate with battery pack. With the rapid proliferation of Electric Vehicles (EVs), effective Battery Thermal Management Systems (BTMS) are essential to ensure optimal performance and longevity of the battery packs. This study aims to investigating the effect of Phase Change Materials (PCM) in a hybrid cooling of a liquid cold plate with the battery pack. In models of battery cell arrangement of 5x13 arrays of aligned modules with the PCM and
S, PalanisamySelvan, Arul Mozhi
This work deals with computational investigations of the component performances of Advanced Hexacopters under various maneuverings of the focused mission profiles. The Advanced Hexacopter is a kind of multirotor vehicle that contains more propellers and flexible arms, which makes this multirotor very maneuverable and aerodynamically efficient. This Hexacopter was designed specifically to execute multi-perspective applications along with enhanced payload-carrying capability. This Advanced Hexacopter contains a frame composed of modified arms equipped with coaxial rotors, which servo motors control. By providing specific and simple inputs to the microcontroller, the Hexacopter can autonomously undergo forward and backward maneuverings. The primary objective of this study is to analyze and compare different propeller configurational clearance sets that improve the maneuvering capability of this unmanned aerial vehicle (UAV), specifically emphasizing forward/backward and side maneuvering
Raja, VijayanandhNarayanan, SidharthElangovan, LogeshArumugam, LokeshSourirajan, LaxanaRaji, Arul PrakashKulandaiyappan, Naveen KumarGnanasekaran, Raj KumarMadasamy, Senthil Kumar
Additive manufacturing has made it possible for the design of increasingly complex structures that require precise manufacturing. This may be particularly beneficial for heat pipe and vapor chamber design – particularly for the wick structure, a very important component. This study uses numerical simulation to analyze three different types of lattice structures of increasing complexity, in terms of their capillary performance. This is one of the most important parameters which determine the wick efficacy. Simple cubic, Column and Octet lattice models are computationally designed and CFD is used to simulate capillary action in a pipe of 0.4 mm inner radius for 2 milliseconds, after validation of the numerical model with existing experimental results. It is found that the Octet lattice (with the most complex inner structure) has the greatest capillary rise in the same amount of time. The rate of rise is not uniform for any structure, but is highest for Octet. This study demonstrates the
Sundararaj, SenthilkumarHudge, AjayBasuroy, SuhashiniKang, Shung-Wen
This work addresses an innovative method for improving energy harvesting in Bladeless wind turbines (BWT) by implementing profile modifications to the wind turbine for fixing it in Unmanned Surface Vehicles (USV). The streamlined flow undergoes a transformation and generates a vortex in the vicinity of the structure when the wind impacts the BWT. As the velocity increases, the wind strikes the structure with greater force, resulting in an imbalance that causes the structure to vibrate. To convert this vibrational energy of the wind turbine into electrical energy, the research investigates the use of a variety of profile modifications to capitalize on the aerodynamic effect generated by the structure. The entire cylindrical shape is altered to tapered shape, airfoil shapes with coordinates such as NACA 0012, 0015, 0018, 4412 and 4420. In addition to these shapes, hybrid models were also constructed by merging models made from two airfoil coordinates, including NACA 0018 & 4412, NACA
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
This study focuses on developing and deploying an Unmanned Aquatic Vehicle (UAV) capable of underwater travel. The primary objectives of this project are to detect the presence of dimethyl sulfide and toluene, as well as to identify any potential oil leakage in underwater pipelines. The UAV has a maximum operating depth of 300 m below the water surface. The design of this UAV is derived from the natural design of Rhinaancylostoma, an underwater kind of fish. The maximum operational setting for this mission is fixed at a depth of approximately 300 m beneath the surface of the sea, and the choice of this species is suitable for fulfilling the objectives of this undertaking. This technology will mitigate the risk associated with human interaction in inspection processes and has the potential to encompass various other resources in the future. The initial design data of the UAV is determined using analytical processes and verified formulas. The selection of the airfoil is done by comparing
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
The objective of this research is to present a novel variant of an Unmanned Aerial Vehicle (UAV) with an advanced flying wing configuration capable of detecting and rescuing individuals affected by avalanches. This leads to testing of the UAV, to identify if it can operate efficiently at the intended temperature and atmospheric conditions. Typically, UAVs can operate in a broad spectrum of temperatures. Regions prone to avalanches would experience near-cryogenic temperatures. The notion is investigated and tested in this specific scenario. The chosen location is Siachen, where temperatures can become as low as -25 degree Celsius (°C). It has been proven that a thermal camera aids the UAV to detect the distinct body heat signatures of individuals who are trapped under snow. The selection of wing, propeller, and vertical stabilizer airfoils is guided by standard analytical calculations, while the overall model is developed using 3D EXPERIENCE. The computational tests are conducted using
Veeraperumal Senthil Nathan, Janani PriyadharshiniPisharam, Akhila AjithSourirajan, LaxanaBaskar, SundharVinayagam, GopinathStanislaus Arputharaj, BeenaL, NatrayanSakthivel, PradeshRaja, Vijayanandh
Items per page:
1 – 50 of 4287