Browse Topic: Tire friction
For all the engineering that takes place at the Treadwell Research Park (TRP), Discount Tire's chief product and technical officer John Baldwin told SAE Media that there's actually something akin to magic in the way giga-reams of test data are converted into information non-engineers can usefully understand. TRP is where Discount Tire generates data used by the algorithms behind its Treadwell tire shopping guide. The consumer-facing Treadwell tool, available in an app, a website and in stores, provides tire shoppers with personalized, simple-to-understand recommendations that are mostly based on a five-star scale. Discount Tire and its partners have tested over 20,000 SKUs, representing 500 to 1000 different types of tires over the years, Baldwin said, including variants and updates. Testing a tire to discover it has an 8.2 rolling resistance coefficient is one thing. The trick is finding a way to explain it to someone standing in a tire shop
ABSTRACT In this paper, a conceptually new research direction of the tire slippage analysis is provided as a new technological paradigm for agile tire slippage control. Specifically, the friction coefficient-slippage dynamics is analyzed and its characteristic parameters are introduced. Next, the nonlinear relation between the wheel torque and the tire instantaneous rolling radius incorporating the longitudinal elasticity factor is analyzed. The relation is shown to be related to the tire slippage. Further, its importance is clarified by deriving its dynamics and specifically, the instruction is given how it can be utilized to control slippage. Finally, the indices are introduced to assess the mobility and agility of the wheel in order to achieve optimal response to severe terrain conditions. The indices comprise of the introduced friction coefficient-slippage characteristic parameters. Citation: M. Ghasemi, V. Vantsevich, D. Gorsich, J. Goryca, A. Singh, L. Moradi, “Physics Based
ABSTRACT A distinctive feature of unmanned and conventional terrain vehicles with four or more driving wheels consists of the fact that energy/fuel efficiency and mobility depend markedly not only on the total power applied to all the driving wheels, but also on the distribution of the total power among the wheels. As shown, under given terrain conditions, the same vehicle with a constant total power at all the driving wheels, but with different power distributions among the driving wheels, will demonstrate different fuel consumption, mobility and traction; the vehicle will accelerate differently and turn at different turn radii. This paper explains the nature of mechanical wheel power losses which depend on the power distribution among all the driving wheels and provides mathematical models for evaluating vehicle fuel economy and mobility. The paper also describes in detail analytical technology and computational results of the optimization of wheel power distributions among the
Over the past twenty years, the automotive sector has increasingly prioritized lightweight and eco-friendly products. Specifically, in the realm of tyres, achieving reduced weight and lower rolling resistance is crucial for improving fuel efficiency. However, these goals introduce significant challenges in managing Noise, Vibration, and Harshness (NVH), particularly regarding mid-frequency noise inside the vehicle. This study focuses on analyzing the interior noise of a passenger car within the 250 to 500 Hz frequency range. It examines how tyre tread stiffness and carcass stiffness affect this noise through structural borne noise test on a rough road drum and modal analysis, employing both experimental and computational approaches. Findings reveal that mid-frequency interior noise is significantly affected by factors such as the tension in the cap ply, the stiffness of the belt, and the properties of the tyre sidewall
Planning for charging in transport missions is vital when commercial long-haul vehicles are to be electrified. In this planning, accurate range prediction is essential so the trucks reach their destinations as planned. The rolling resistance significantly influences truck energy consumption, often considered a simple constant or a function of vehicle speed only. This is, however, a gross simplification, especially as the tire temperature has a significant impact. At 80 km/h, a cold tire can have three times higher rolling resistance than a warm tire. A temperature-dependent rolling resistance model is proposed. The model is based on thermal networks for the temperature at four places around the tire. The model is tuned and validated using rolling resistance, tire shoulder, and tire apex temperature measurements with a truck in a climate wind tunnel with ambient temperatures ranging from -30 to 25 °C at an 80 km/h constant speed. Dynamic tire simulations were conducted using a heat
Knowing the tire pressure during driving is essential since it affects multiple tire properties such as rolling resistance, uneven wear, and how prone the tire is to tire bursts. Tire temperature and cavity pressure are closely tied to each other; a change in tire temperature will cause an alteration in tire cavity pressure. This article gives insights into which tire temperature measurement position is representative enough to estimate pressure changes inside the tire, and whether the pressure changes can be assumed to be nearly isochoric. Climate wind tunnel and road measurements were conducted where tire pressure and temperature at the tire inner liner, the tire shoulder, and the tread surface were monitored. The measurements show that tires do not have a uniform temperature distribution. The ideal gas law is used to estimate the tire pressure from the measured temperatures. The results indicate that of the compared temperature points, the inner liner temperature is the most
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under cornering conditions. The properties are acquired as functions of normal force and slip angle using a sequence specified in this practice. At each normal force increment, the slip angle is continually ramped or stepped. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine. Users of this SAE Recommended Practice may modify the recommended protocols to satify the needs of specific use-cases, e.g., reducing the recommended number of test loads and/or pressures for benchmarking purposes. However, due care is necessary when modifying the protocols to maintain data integrity
The pending Euro 7 vehicle-emissions regulations include a significant new sustainability wrinkle: first-ever restrictions for PM emissions from brakes. In a proposal submitted in November of 2022, the European Commission detailed its new Euro 7 vehicle emissions standard, which is widely expected to be approved by the European Parliament and Council and begin phase-in starting on July 1, 2025. Another phase of emissions legislation is nothing new, but one critical element of Euro 7 is new to the regulation chessboard: first-ever limits on how much particulate matter (PM) can be generated by a vehicle's brakes. This element of Euro 7 has auto and commercial-vehicle brake-component suppliers scurrying. Commercial vehicles are subject to their own compliance levels as they interpret how the new regulations will impact their existing technologies and what new solutions will be required. The proposed Euro 7 regulations also address the emissions of fine microplastic particles created by
Different tire models are applied in agricultural mobility, but the impacts on the ground are not completely known. Some models of industrial tires, with applications in construction machines, could meet the agricultural demand since there is a shortage offer exclusive models for agriculture. The aim of this research was to analyze in a Fixed Tire Testing Unit (FTTU), under controlled conditions, the performance of two tire types, the first for agricultural construction and the second for industrial construction on two different agricultural soils (two surfaces). The characteristics of the tires evaluated were: 620/75R26 (agricultural tire) and 23.5-25 (industrial tire). The soil used to simulate the agricultural surface were: Red Yellow Latosol and the Distroferric Red Nitosol, chosen because they are representative of agricultural areas in Brazil. The research response variables were soil penetration resistance (Cone Index), deformation caused by tires, real and total contact area
This procedure covers vehicle operation and electric dynamometer (dyno) load coefficient adjustment to simulate track road load within dynamometer inertia and road load simulation capabilities
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft
This SAE Standard applies to all combinations of pneumatic tires, wheels, or runflat devices (only as defined in SAE J2013) for military tactical wheeled vehicles only as defined in SAE J2013. This applies to original equipment and new replacement tires, retread tires, wheels, or runflat devices. This document describes tests and test methodology, which will be used to evaluate and measure tire/wheel/runflat system and changes in vehicle performance. All of the tests included in this document are not required for each tire/wheel/runflat assembly. The Government Tire Engineering Office and Program Office for the vehicle system have the responsibility for the selection of a specific test(s) to be used. The selected test(s) should be limited to that required to evaluate the tire/wheel/runflat system and changes in vehicle performance. Selected requirements of this specification shall be used as the basis for procurement of a tire, wheel, and/or runflat device for military tactical wheeled
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response
Items per page:
50
1 – 50 of 295