Browse Topic: Rudders
A modular vertical takeoff and landing (VTOL) unmanned aerial system (UAS) is made up of multiple unmanned aerial vehicle (UAV) modules with uniform wingtips for tip-to-tip docking. Each UAV has twin booms with front and rear propellers and an empennage with a downward-mounted vertical rudder. All the propellers are tiltable for VTOL and the front ones are stowable for cruise efficiency
The rise in national industry occurred more frequently in the aircraft industry as stabilizers and rudders at the rear of the aircraft. The automotive industry is also using composite materials reinforced by synthetic fibers in various vehicle components, such as the bumper and trunk tray. Plies and laminates produced from the composite can be used in car interior trim. Much is made of sisal fibers as reinforcement in cars, this study aims to evaluate the influence of the addition of wood waste, angelim pedra (Hymenolobium petraeum Ducke), at composite polyester matrix reinforced by sisal and malva fibers. The fibers and the residue were purchased in local market and characterized physically, microstructurally and mechanically. The specimens of malva and residues were cut in three different sizes: 5, 10 and 15 mm, by the way the hybrid composites reinforced by sisal and the residues, the sisal fibers were cut at a randomly lengths. The residue angelim pedra was sieved to control its
Deep-sea remotely operated vehicles (ROVs) present motion control design engineers with some difficult challenges. Applications may include ROV propulsion, position thrusters, dive vanes, rudders, or robotic arms. Some problems are common to all of them
We present a wireless sensor system for temperature measurement and icing detection for the use on aircraft. The sensors are flexible (i.e. bendable), truly wireless, do not require scheduled maintenance, and can be attached easily to almost any point on the aircraft surface (e.g. wings, fuselage, rudder, elevator, etc.). With a sensor thickness of less than two millimeters at the current state of development, they hardly affect the aero dynamical behavior of the structure. In this paper, we report laboratory and field results for temperature measurement and icing detection
The performance enhancement of a vertical tail provided by aerodynamic flow control could allow for the size of the tail to be reduced while maintaining similar control authority. Decreasing tail size would create a reduction in weight, drag, and fuel costs of the airplane. The application of synthetic jet actuators on improving the performance of the vertical tail was investigated by conducting experiments on 1/9th and 1/19th scale wind tunnel models (relative to a Boeing 767 tail) at Reynolds numbers of 700,000 and 350,000, respectively. Finite-span synthetic jets were placed slightly upstream of the rudder hinge-line in an attempt to reduce or even eliminate the flow separation that commences over the rudder when it was deflected to high angles. Global force measurements on the 1/9th scale model showed that the flow control is capable of increasing side force by a maximum of 0.11 (19%). The momentum coefficient that created this change was relatively small (Cμ = 0.124%). Furthermore
Items per page:
50
1 – 50 of 101