Results
This document contains recommended practices for the effective control of non-deliverable software. It addresses practices for control during the development, production, release maintenance, and retirement of non-deliverable software, as well as for software procured from outside manufacturers and incorporated in the production, evaluation, test, acceptance or calibration of processes. For the purposes of this document, the terms software and non-deliverable software are considered synonymous.
This SAE Aerospace Information Report (AIR) provides a methodology for performing a statistical assessment of gas-turbine-engine stability-margin usage. Consideration is given to vehicle usage, fleet size, and environment to provide insight into the probability of encountering an in-service engine stall event. Current industry practices, such as ARP1420, supplemented by AIR1419, and engine thermodynamic models, are used to determine and quantify the contribution of individual stability threats. The statistical technique adopted by the S-16 committee for performing a statistical stability assessment is the Monte Carlo method (see Applicable References 1 and 2). While other techniques may be suitable, their application is beyond the scope of this document. The intent of the document is to present a methodology and process to construct a statistical-stability-assessment model for use on a specific system and its mission or application.
The turbine-engine inlet flow distortion methodology addressed in this document applies only to the effects of inlet total-pressure distortion. Practices employed to quantify these effects continue to develop and, therefore, periodic updates are anticipated. The effects of other forms of distortion on flow stability and performance, and of any distortion on aeroelastic stability are not addressed. The guidelines can be used as necessary to create a development method to minimize the risk of inlet/engine compatibility problems. The degree to which guidelines for descriptor use, assessment techniques, and testing outlined in this document are applied to a specific program should be consistent with the expected severity of the compatibility problem.
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
The purpose of this document is to establish the requirements for Real-Time Communication Protocols (RTCP). Systems for real-time applications are characterized by the presence of hard deadlines where failure to meet a deadline must be considered a system fault. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms and commercial aircraft, but are generally applicable to any distributed, real-time, control systems. These requirements are primarily targeted for the Transport and Network Layers of peer to peer protocols, as referenced in the Open System Interconnect Reference Model (2.2.1 and 2.2.2), developed by the International Standards Organization (ISO). These requirements are intended to complement SAE AS4074 (2.1.1) and AS4075 (2.1.2), and future SAE communications standards. Although information transfer objectives herein concentrate primarily on digital data flow attributes, efforts have been made such as not to preclude
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized. It should be noted, however, that many of the concepts described require interconnect systems with advanced operational and performance characteristics
This document reviews the state of the art for data scaling issues associated with air induction system development for turbine-engine-powered aircraft. In particular, the document addresses issues with obtaining high quality aerodynamic data when testing inlets. These data are used in performance and inlet-engine compatibility analyses. Examples of such data are: inlet recovery, inlet turbulence, and steady-state and dynamic total-pressure inlet distortion indices. Achieving full-scale inlet/engine compatibility requires a deep understanding of three areas: 1) geometric scaling fidelity (referred to here as just “scaling”), 2) impact of Reynolds number, and 3) ground and flight-test techniques (including relevant environment simulation, data acquisition, and data reduction practices). The Model-to-Full Scale Subcommittee of the S-16 Turbine Engine Inlet Flow Distortion Committee has examined archives and has obtained recollections of experts regarding air induction system development
The CDIF Family of Standards is primarily designed to be used as a description of a mechanism for transferring information between CASE tools. It facilitates a successful transfer when the authors of the importing and exporting tools have nothing in common except an agreement to conform to CDIF. The language that is defined for the Transfer Format also has applicability as a general language for Import/Export from repositories. The CDIF Integrated Meta-model defined for CASE also has applicability as the basis of standard definitions for use in repositories. The standards that form the complete family of CDIF Standards are documented in EIA/IS-106 CDIF - CASE Data Interchange Format - Overview. These standards cover the overall framework, the transfer format and the CDIF Integrated Meta-model. The diagram in Figure 1 depicts the various standards that comprise the CDIF Family of Standards. The shaded box depicts this Standard and its position in the CDIF Family of Standards. This
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics-of-Failure analysis. In addition the report describes the process used to validate the computer simulation models.
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model. The test methods and procedures described here include those for six-component force measurements and measurements of pressures and velocities both on the vehicle/model
This SAE Recommended Practice covers the application of primary wiring distribution system harnesses to automotive, and Motor Coach vehicles. This is written principally for new vehicles but is also applicable to rewiring and service. It covers the areas of performance, operating integrity, efficiency, economy, uniformity, facility of manufacturing and service. This practice applies to wiring systems of less than 50 V.
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/ maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
The tests are static in nature to minimize complexity and cost of required testing facilities. As far as practical, applied static loads should take into account the combined static and dynamic loads anticipated in service. It is intended that tests shall be non-destructive in nature and not result in damage unless ultimate load conditions are employed. Test equipment and methods of testing described are not meant to be restrictive. Alternate equivalent methods to accomplish the desired results may be employed. In selected cases, tests may be repeated under ultimate load conditions when required for substantiation of analytical data. If this becomes necessary, the parts deformed may be removed and replaced prior to the retest.
This Aerospace Information Report (AIR) is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications of aircraft tow tractors, this AIR is not intended to provide the methods and all data necessary for detailed calculations and design of an aircraft tow tractor.
This SAE Aerospace Recommended Practice (ARP) describes a two-pole electric connector for use in battery powered ground support equipment, i.e., traction batteries. Alternatively, the connector can have two or more auxiliary contacts for auxiliary circuits. A handle may be added as an option to assist in connecting and disconnecting.
Items per page:
50
1 – 50 of 212269