Results
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile Particulate Matter (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane. As the particle losses are size dependent, the magnitude of correction
This document establishes dimensional, structural, and environmental requirements for Type II/2 interline pallet nets. Type II/2 covers NAS3610/AS36100 code sizes.
This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers.
This procurement specification covers aircraft-quality bolts and screws made from 6Al - 4V titanium alloy of the type identified under the Unified Numbering System as UNS R56400. The following specification designation and its properties are covered:
This specification covers procedures for ultrasonic inspection of thin wall metal tubing of titanium, titanium alloy, and corrosion- and heat-resistant steels and alloys having nominal OD over 0.1875 inch (4.762 mm) with OD to wall thickness ratio of 8 or greater and wall thickness variation not exceeding ±10% of nominal.
This test method is designed to indicate the degree of surface tackiness, color transfer, loss of embossment, and surface marring when two trim materials are placed face to face under specific conditions of time, temperature, and pressure. These specific conditions are not dictated in this test procedure but will be found in the material standards which govern each type of trim material to be tested.
This SAE Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools, and publications related to active safety systems. This information report is a survey of active safety systems and related terms. The definitions offered are descriptions of functionality rather than technical specifications. Included are warning and momentary intervention systems, which do not automate any part of the dynamic driving task (DDT) on a sustained basis (SAE Level 0 as defined in SAE J3016), as well as definitions of select features that perform part of the DDT on a sustained basis (SAE Level 1 and 2).
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
This SAE Standard serves as a guide for testing procedures of automotive 12 V storage batteries. The information contained herein was originally developed based on traditional ICE operation but can be more broadly applicable to other vehicle architectures. Although the test procedures contained herein are written from the standpoint of a 12 V nominal battery, they can be scaled for batteries with different nominal voltages.
These methods of test are applicable for determining the resistance to snagging and abrasion of automotive bodycloth, vinyl, and leather.
This SAE Recommended Practice establishes a uniform procedure for assuring the manufactured quality, installed utility and performance of automotive products to the relocation, alteration, replacement, and/or extension of secondary controls and systems other than those provided by the vehicle manufacturer (OEM). These products are intended to provide driving capability to persons with physical disabilities. These products function as adaptive modifications to compensate for lost or reduced function in the extremities of the driver. These include, but are not limited to, the following: Cruise control; door locks; gear selector; hazard flasher; headlight beam selector; heater/vent/defroster/air conditioner (HVAC); horn; ignition/starter; light controls; mirrors; parking brake; power seats; turn signals; power window controls; and windshield wiper/washer; rear accessories (defogger, wiper/washer). The purpose of any secondary control adaptation is to provide the effective use of the motor
This specification covers inert, fluorochemical, liquid heat transfer agents.
This Surface Vehicle & Aerospace Recommended Practice offers best practices and a methodology by which IVHM functionality relating to components and subsystems should be integrated into vehicle or platform level applications. The intent of the document is to provide practitioners with a structured methodology for specifying, characterizing and exposing the inherent IVHM functionality of a component or subsystem using a common functional reference model, i.e., through the exchange of design-time data and the application of standard vehicle data communications interfaces. This document includes best practices and guidance related to the specification of the information that must be exchanged between the functional layers in the IVHM system or between lower-level components/subsystems and the higher-level control system to enable health monitoring and tracking of system degradation severity. The intent is to provide an IVHM system that can robustly report the degradation of a given
This recommended practice shall apply to all on-highway trucks and truck-tractors equipped with air brake systems and having a GVW rating of 26 000 lb or more.
This SAE Recommended Practice establishes uniform cold weather test procedures and performance requirements for engine coolant type heating systems of bus that are all vehicles designed to transport 10 or more passengers. The intent is to provide a test that will ensure acceptable comfort for bus occupants. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Required test equipment, facilities, and definitions are included. There are two options for producing hot coolant in this recommended practice. Testing using these two approaches on the same vehicle will not necessarily provide identical results. Many vehicle models are offered with optional engines, and each engine has varying coolant temperatures and flow rates. If the test is being conducted to compare the performance of one heater design to another heater design, then the external coolant source approach (Test A) will yield the most comparable results. If the
This specification covers a polysulfide sealing compound with low adhesive strength, supplied as a two-component system that cures at room temperature.
This SAE Standard applies to all forestry machines exposed to the hazard of objects penetrating the front of the operator station (other than the roof). This would include:
The terms and definitions in this document describe the functions performed within an ADS, as defined in SAE J3016. Where possible we have attempted to capture the language that is already in use within the automated driving development community. Where needed, we have added new terms and definitions, including clarifying notes to avoid ambiguity. SAE J3131 deals primarily with Level 4 and Level 5 ADS features.
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
This test method can be used to determine the dimensional stability of textile materials and vinyl-coated fabrics when subjected to conditions which cause changes in the moisture content of the materials.
This standard establishes the minimum requirements for training, examination, and certification of aerospace coatings application personnel applying liquid organic coatings to interior structural or exterior substrates. It establishes criteria for the certification of personnel requiring appropriate knowledge of the technical principles underlying aircraft surface preparation and coatings application for both protective and decorative purposes. Persons who successfully complete the requirements of this certification standard are considered to be able to successfully and consistently perform a broad spectrum of aerospace coatings application tasks to achieve the desired engineering purposes. This certification is not intended to determine or replace any aerospace coating operation’s proprietary engineering for the depainting, preparation, or subsequent application of organic coatings materials to aircraft surfaces.
This SAE Aerospace Information Report (AIR) provides background information, technical data, and related technical references for minimization of electrostatic hazards in aircraft fuel systems.
AIR 1939 addresses communication of LCC data between equipment suppliers, aircraft engine producers, aircraft manufacturers, and users, as illustrated in Figure 1. The LCC data categories addressed include: research, development, test and evaluation (RDT&E); acquisition (initial procurement and investment); and operating and support (O&S) costs. While input and output formats are suggested, calculation procedures and cost methodology are specifically excluded since many LCC models preferred by the industry are company sensitive or proprietary (Figure 1). The relationship of LCC input data to program phase is described. Ground rules and assumptions are addressed. A glossary of LCC terms is provided. The LCC impact of propulsion systems on other aircraft systems is considered. This document was specifically developed for military propulsion system cost analysis. However, it is believed that a functional relationship exists between military and commercial Life Cycle Cost analysis and that
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
This specification covers the engineering requirements for electrodeposition of cadmium-titanium on metal parts and the properties of the deposit.
This SAE Aerospace Recommended Practice (ARP)4294 is directed at life cycle cost (LCC) analysis of aerospace propulsion systems and supplements AIR1939. Specific topics addressed by ARP4294 are listed below: a Propulsion system LCC element structure. b Information exchange and relationships with: (1) Aircraft manufacturer (2) Equipment suppliers (3) Customer c The relationship of the LCC element structure to work breakdown structures. d The relationship between LCC analysis and other related disciplines (e.g., technical (performance analysis, weight control, component lives), reliability, availability and maintainability (RAM), integrated logistic support (ILS), production and finance). e Classification of the accuracy and applicability of LCC assessments.
Dynamic simulation sled testing can represent various automotive collision conditions. Acceleration conditions during sled testing are readily reproducible and can be tuned to simulate collision events that occur during vehicle impacts with a fixed barrier or vehicle. Sled tests are conducted on automotive vehicle bodies or other structures to obtain valuable information. This information can be used to evaluate the dynamic performance of, but not limited to, vehicle restraint systems, vehicle seating systems, and body closure systems.
Items per page:
50
1 – 50 of 211161