Results
This specification covers nonfluorescent, magnetic particles in the form of dry powders in the form of single or composite magnetic particle intended to be suspended in oil or conditioned water vehicle for use in the wet method, magnetic particle inspection
This SAE Standard presents a method of determining the stiffness of interior trim materials, substrates, and composites by a three-point bending test
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated, operator controlled forward warning horn devices, primarily intended for use on self-propelled, work machines as defined by SAE J1116 (limited to categories of (1) construction and (2) general purpose industrial
This SAE Standard covers general requirements and dimensions of various sizes of eyelet and spade type terminals
This specification covers a titanium alloy in the form of bars, wire, forgings, and flash welded rings 4.000 inches (101.60 mm) and under in nominal diameter or least distance between parallel sides and of stock of any size for forging and flash welded rings
This specification covers an aluminum alloy in the form of sheet clad on both sides with a different alloy for sheet thicknesses of 0.020 to 0.128 inches (0.51 to 3.25 mm), inclusive, in nominal thickness (see 8.5
This specification covers a titanium alloy in the form of bars, wire, and forgings up through 4.000 inches (101.60 mm), inclusive, in diameter or least distance between parallel sides and forging stock of any size (see 8.8
This specification covers an aluminum alloy in the form of sheet and plate with thickness from 0.008 to 4.000 inches (0.20 to 101.6 mm), inclusive, clad on two sides (see 8.6
Data is information that has been recorded in a form or format convenient to move or process. It is important to distinguish between data and the format. The format is a structured way to record information, such as engineering drawings and other documents, software, pictures, maps, sound, and animation. Some formats are open source, others proprietary. Regardless of the format, there are three broad types of data. Table 1 lists these types of data and provides examples. DM, from the perspective of this standard, consists of the disciplined processes and systems utilized to plan for, acquire, and provide management and oversight for product and product-related business data, consistent with requirements, throughout the product and data life cycles. Thus, this standard primarily addresses product data and the business data required for stakeholder collaboration extending through the supply chain during product acquisition and sustainment life cycle. This standard has broader application
This SAE Aerospace Recommended Practice (ARP) specifies criteria for the design, development, standardization, and comprehension testing of placards containing pictures, drawings, symbols, and/or written instructions for locating and operating aircraft emergency equipment. This ARP also provides guidance in the selection and implementation of warning placards intended to instruct occupants inside, and rescue personnel outside, the aircraft
This SAE Aerospace Recommended Practice recommends general criteria for the development and installation of an aircraft emergency signal system to permit any crew member (flight or cabin) to inform all other crew members that an emergency evacuation situation exists and that an evacuation has been or should be immediately started
This SAE Standard describes the concept of operation, use cases, and message flows to create a Sensor Sharing Service (SSS). This service enable RSUs and V2X1 vehicles to share information about their localized driving environment. This work defines message structure, V2X entity requirements, and information elements to describe detected objects to facilitate sensor sharing
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash welded rings in the solution heat treated condition. Product covered by this specification is limited to 10.00 inches (254 mm) and under in nominal diameter or maximum cross-sectional dimension between parallel sides (thickness) and nominal cross sectional area of 78.54 in2 (503 cm2) in cross-sectional area. Stock for forging, ring, or heading may be of any size
This standard applies to the aerospace and defense industries and their supply chain
This SAE Aerospace Information Report (AIR) provides basic information on the use of slipper seal sealing devices when used as piston (OD) and rod (ID) seals in aerospace fluid power components such as actuators, valves, and swivel joints, including: The definition of a slipper seal and the description of the basic types in use. Guidelines for selecting the type of slipper seal for a given design requirement are provided in terms of friction, leakage, service life, installation characteristics, and interchangeability
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars 3.00 inches (76.2 mm) and under in nominal diameter, thickness or for hexagons least distance between parallel sides, forgings, flash welded rings 3.00 inches (76.2 mm) and under in nominal radial thickness, and stock of any size for forging, flash welded rings, or heading (see 8.5
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 2.000 inches (0.51 to 50.80 mm), inclusive, in nominal thickness, supplied in the annealed (-O) condition (see 8.3). When specified, product shall be supplied in the “as fabricated” (-F) temper
This specification covers a titanium alloy in the form of extruded bars and shapes, flash welded rings 3.000 inches (76.20 mm) and under in nominal diameter or least distance between parallel sides, and stock for flash welded rings
This specification covers an aluminum alloy in the form of two types of welding wire
This specification covers an aircraft-quality, low-alloy steel in the form of heat treated bars and forgings 1.00 inches (25.4 mm) and under in nominal cross section or diameter and for hexagonal shapes, least distance between parallel sides
This specification covers a copper-nickel-tin alloy in the form of mechanical tube 1.100 to 13.6 inches (28 to 346 mm) in outer diameter (see 8.11
This SAE Aerospace Information Report (AIR) presents preferred design, assembly, and repair practices for sealing of aircraft integral fuel tanks, including rework of applied fuel tank seals. It addresses engineering designs for integral fuel tanks as they are currently found in practice and discusses the most practical and conservative methods for producing a reliable, sealed system. Although this AIR presents practices for sealing of integral fuel tanks, the practices presented within this report are practices that are carried throughout sealing that include both pressure and environmental aircraft sealing. Design preferences for optimum sealing are not within the scope of this document. Such discussions can be found in the United States Air Force (USAF) sponsored report AFWAL-TR-87-3078, “Aircraft Integral Fuel Tank Design Handbook.” Key objectives of the fuel tank sealing process are to produce a sealing plane that is leak-free and corrosion resistant, especially at fastener
This specification covers a corrosion-resistant steel in the form of flat wire 0.005 to 0.095 inch (0.13 to 2.41 mm) thick, inclusive
This standard covers supplemental requirements for low tension primary cable intended for use as Fusible Links (Fuse Links) at a nominal system voltage of 60 V DC (25 V AC) or less in surface vehicle electrical systems. These supplemental requirements are intended to qualify cables for an extreme current overload
This SAE Standard defines requirements relating to the elements of design, operation, and maintenance of light utility vehicles (LUVs). The safety specifications in this document apply to any self-propelled, operator-controlled, off-highway vehicle 1829 mm (72 inches) or less in overall width, exclusive of added accessories and attachments, operable on three or more wheels or tracks, primarily intended to transport material loads or people, with a gross vehicle weight of 2500 kg (5500 pounds) or less, and a maximum design speed less than or equal to 40.23 km/h (25 mph). This document is not intended to cover go-karts (ASTM F2007-07a), fun-karts (ASTM F2011-02e1), dune buggies, and all terrain-vehicles (ATVs) complying with ANSI/SVIA 1
This SAE Recommended Practice provides test procedures, requirements, and guidelines for rear fog lamp systems
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 4.00 inches (0.51 to 101.60 mm), inclusive, in nominal thickness (see 8.5
This specification covers an aluminum alloy in the form of sheet and plate up to 2.000 inches (50.80 mm), inclusive, in thickness (see 8.5
This specification covers a columbium alloy in the form of bars, rods, or wire
This specification covers the engineering requirements for electrodeposition of a hard nickel and the properties of the deposit
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, extrusions, flash welded rings, and stock for forging, extruding, or flash welded rings
This specification covers a columbium (niobium) alloy in the form of foil, sheet, strip, or plate
The purpose of this SAE Recommended Practice is to provide a common electrical and mechanical interface specification that can be used to design electronic accelerator pedal position sensors and electronic control systems for use in medium- and heavy-duty vehicle applications
This SAE Recommended Practice applies to S-CAM, wedge, and disc air brake actuators where the stroke can be measured without disassembly from the brake
This specification covers a corrosion-resistant steel in the form of welding wire
This specification covers a corrosion- and heat-resistant steel in the form of seamless tubing
Items per page:
50
1 – 50 of 212703