Your Selections

Weather and climate
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

LIFE CYCLE ASSESSMENT OF A PASSENGER VEHICLE TO ANALYSE THE ENVIRONMENTAL IMPACTS USING CRADLE TO GRAVE APPROACH

Mahindra Research Valley-Rahul Lalwani, Saravanan N, Arunmozhi veeraputhiran, ILAVARASI D
  • Technical Paper
  • 2019-28-2581
To be published on 2019-11-21 by SAE International in United States
OBJECTIVE: Climate change is primary driver in the current discussions on CO2 reduction in the automotive industry. Current Type approval emissions tests (BS III, BS IV) covers only tailpipe emissions, however the emissions produced in upstream and downstream processes (e.g. Raw material sourcing, manufacturing, transportation, vehicle usage, recycle phases) are not considered in the evaluation. The objective of this project is to assess the environmental impact of the product considering all stages of the life cycle, understand the real opportunities to reduce environmental impact across the product life cycle. METHODOLOGY: As a part of environmental sustainability journey in business value chain, Life-cycle assessment (LCA) technique helps to understand the environmental impact categories. To measure overall impact, a cradle to grave approach helps to assess entire life cycle impact throughout various stages. LCA is a technique to assess environmental impacts associated with all the stages of a product's life from raw material extraction through materials processing, manufacture, distribution, use, repair & maintenance, disposal or recycling. A study was conducted on a passenger vehicle for life cycle…
 

Electric Vehicle Thermal Management System For Hot Climate Regions

Pranav Vikas India Private Limited-Tarun Rana, Yuji Yamamoto
  • Technical Paper
  • 2019-28-2507
To be published on 2019-11-21 by SAE International in United States
ELECTRIC VEHICLE THERMAL MANAGEMENT SYSTEM FOR HOT CLIMATE REGIONS Rana Tarun*, Yamamoto Yuji, Kumar Ritesh, Bhagatkar Shubhada Pranav Vikas India Private Limited, India Key Words Electric Vehicles (EV); Battery Thermal Management System (BTMS); COP; Electric Vehicle Thermal Management System (EVTMS); BTMS and HVAC System Integration; Thermal System Performance Comparison; Active Liquid Cooling; EV Battery Cooling Research and/or Engineering Questions/Objective Electric Vehicles is the need of time to limit global warming and it is in application at a wide scale in colder or mild climate regions where ambient temperature is limited to mild or moderate level. Its application (Heat pump, CO2) is constrained to cold climates only due to securing better COP for heating function, sacrificing cooling COP of the existing system when operated in Hot Climate Regions, thus limiting its application to nearly half of the automotive user-base. This study is aimed to develop a new Electric Vehicle Thermal Management System (EVTMS) limited to active liquid cooling for application of Electric Vehicle in Hot Climate Regions with higher system COP targets when compared to existing…
 

Premium Buses Airconditioning System Development and Verification

Volvo Buses-Ganesh Kowndinya, Asish Mohanty
  • Technical Paper
  • 2019-28-0020
To be published on 2019-10-11 by SAE International in United States
Airconditioning has become a prominent picture in premium segment buses over a decade of time. It has undergone many changes as and when the demand for passenger comfort in public transport industry has raised. Airconditioning is a critical topic influencing the passenger comfort in most of the mass transit vehicles. Transit buses operate in diversified weather conditions especially in country like India across the year, which impose challenge to a single airconditioning system fitted onto bus to provide right airconditioning so the passenger comfort will not be compromised. Airconditioning system has positively increased the comfort level of passengers irrespective of hauling distance or its application for city or intercity transits. Selecting a right airconditioning system for bus application plays a major role in addressing the passenger comfort topic in a broader perspective. This paper discuss on those important area's which directly impacts the passenger comfort in transit application. This paper discuss in detail onto different stages in Airconditioning system selection process, development methods and verification process to evaluate the system against stated requirement while keeping…
 

Amelioration of modular mobility by adopting split cell solar panel cleaning and cooling therof

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Ajith Raja, Arunpragash Mohana Sundaram, Ashwanth Pranav Selvamani
  • Technical Paper
  • 2019-28-0078
To be published on 2019-10-11 by SAE International in United States
In photovoltaic system the efficiency of solar cells is determined in combination with latitude and climate. The electricity generation in photovoltaic cell is more in the morning time than in the afternoon time. This is due to the fact that an increase in solar cell temperature leads to a decrease in efficiency of the solar panel. This work aims to provide necessary cooling to the solar panel for favourable output during noon time. Normally electrical modular vehicles use non-split cell solar panels. In order to increase the efficiency, we are using split cell solar panel as it increases voltage by halving the size of the silicon chips. Thus, halving the cells results in increasing efficiency and lowering the operation temperature. The solar panel should be maintained at a particular temperature by adopting sprinkling of water method in solar panel for hybrid vehicles. The proposed system consists of storage tank, temperature sensor, water sprinkle jets attached to the hybrid vehicle. When the temperature increases beyond the limit, the temperature sensor provides signal to the water jets…
 

Estimation of Fuel Consumption and CO2 Emissions of Car Travel in Transportation Planning: the Lazio Region Case Study

Niccolò Cusano University-Paolo Delle Site
Sapienza University-Sonia Briglia
  • Technical Paper
  • 2019-24-0252
To be published on 2019-10-07 by SAE International in United States
The reduction of oil dependence and CO2 emissions have been included in the set of policy objectives by the European Union, according to the latest White Paper on transportation. Car travel is heavily dependent on oil, with minor exceptions represented by CNG (compressed natural gas) and all-electric vehicles. There is a tight relationship between CO2 emissions, almost unanimously recognized as main determinant of climate change, and fuel consumption. The paper provides a comparative analysis of two methods that can be used in transportation planning for the estimation of fuel consumption and CO2 emissions of car travel. The first method uses consumption and emission factors per vehicle-km travelled that are based on average network speed. The second method uses consumption and emission factors that are specific of the individual links of the network. In the second case, the link-specific average speed and flow that result from the assignment of the origin-destination travel demand matrix to the road network, subject to congestion, are the inputs of consumption and emission estimation. Link-specific travel times and flows, in a…
 

Assessment of Energy Consumption and Range in Electric Vehicles with High Efficiency HVAC Systems Based on the Tesla Expander

University of Brescia-Paolo Iora, Alberto Cassago, Costante Invernizzi, Alessandro Copeta, Gioele Di Marcoberardino, Stefano Uberti
University of Florence-Daniele Fiaschi, Lorenzo Talluri
  • Technical Paper
  • 2019-24-0244
To be published on 2019-10-07 by SAE International in United States
Battery electric vehicles (BEVs) are considered one of the most promising solution to improve the sustainability of the transportation sector aiming at a progressive reduction of the dependence on fossil fuels and the associated local pollutants and CO2 emissions. Presently, the major technological obstacle to a large scale diffusion of BEVs, is the fairly low range, typically less than 300 km, as compared to classical gasoline and diesel engines. This limit becomes even more critical if the electric vehicle is operated in severe weather conditions, due to the additional energy consumption required by the cabin heating, ventilating, and air-conditioning (HVAC). Presently, the adoption of vapor-compression cycle, either in heat pump or refrigerator configuration, represents the state-of-the-art technology for HVAC systems in vehicles. Such devices typically employ an expansion valve to abruptly reduce the pressure causing the flash evaporation of the working fluid. This component, although necessary to provide the cooling effect, is also responsible of a significant exergy loss, which reduces the efficiency of the thermodynamic cycle. In this paper we study the possible benefits…
 

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

AMA-NASA Langley Research Center-Justin Strickland, Patricia Hunt
FAA William J. Hughes Technical Center-Christopher Dumont
Published 2019-06-10 by SAE International in United States
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida. Ten research flights were made into deep convective systems that included Mesoscale Convective Systems (MCS) near the Gulf of Mexico and Atlantic Ocean, and Tropical Storms Danny and Erika near the Caribbean Sea. The radar and in-situ measurements from these ten flights were analyzed…
Annotation icon
 

Advanced Nanocomposite Low Adhesion Icephobic Coating for Aerospace Applications

Oceanit Laboratories Inc.-Vinod Veedu, Sumil Thapa, Ganesh Kumar Arumugam
Published 2019-06-10 by SAE International in United States
Icing is a major safety issue for flight operations in the civil, defense and space sectors. Ice can form on critical components during takeoff/landing, or while in service, depending on prevailing weather conditions. Aircraft manufacturers relies on two different approaches to prevent ice buildup using an active anti-icing system to melt ice buildup or deicing chemicals/ice repellent surface to minimize the buildup ice. The use of active anti-icing systems offers good protection, however can add significant penalty to overall weight, energy consumption and cost. Aerospace industry is in need for an advanced ice repellent surface to effectively minimize ice buildup on critical components with no modification to existing design can provide significant relief to ice prone systems. In this paper, Oceanit will present its most advanced nanocomposite low ice adhesion icephobic coating technology that was developed and demonstrated for application on metallic surfaces to provide the lowest ice adhesion to significantly reduce ice buildup. Oceanit’s advanced icephobic coating was tested to be one of the lowest ice adhering coating (ice adhesion strength = 5.1kPa) ever…
Annotation icon
 

How Dual Polarization Technique May Improve Weather Radar on Commercial Aircraft

NOVIMET-Jacques Victor Testud, Emmanuel Moreau, Erwan Le Bouar
Published 2019-06-10 by SAE International in United States
The airborne weather radar on a commercial aircraft is essential to ensure flight safety. It is able to detect severe weather, probable areas where presence of hail may be suspected, and thanks to its Doppler capability, the wind shears that may be dangerous when taking-off or landing. However, because it operates at X-band, the picture that it offers to the pilot may be seriously biased in situation of severe weather, in reason of the attenuation of the radar wave.The adoption of the dual pol technique in this weather radar would be most beneficial for the quality of the information delivered to the pilot for the following reasons:1Dual pol technique allows to operate a classification of the precipitation: distinguishing rain, melting layer, snow, hail, small ice particles.2Dual pol technique allows correcting the return signal for attenuation in rain.The paper aims reporting recent advances in the exploitation of dual pol radar data, based on the concept of normalisation of the particle size distribution (PSD) and on ZPHI® algorithm for precipitation retrieval. Their combination helps retrieving parameter N0*…
Datasets icon
Annotation icon
 

High Altitude Ice Crystal Detection with Aircraft X-band Weather Radar

Honeywell Aerospace-Jan Lukas, Pavel Badin
Published 2019-06-10 by SAE International in United States
During participation on EU FP7 HAIC project, Honeywell has developed methodology to detect High Altitude Ice Crystals with the Honeywell IntuVue® RDR-4000 X-band Weather Radar. The algorithm utilizes 3D weather buffer of RDR-4000 weather radar and is based on machine learning. The modified RDR-4000 Weather Radar was successfully flight tested during 2016 HAIC Validation Campaign; the technology was granted Technology Readiness Level 6 by HAIC consortium. After the end of HAIC project, the method was also evaluated with respect to newly set preliminary industry standard performance requirements1. This paper discuses technology design rationale, high level technology architecture, technology performance, and challenges associated with performance evaluation.
Datasets icon
Annotation icon