Your Selections

Vehicle front ends
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES

General Motors Technical Center-Santosh Swamy, Shivakumar Chidanandappa
University of Agder, Norway-Gulshan Noorsumar
  • Technical Paper
  • 2019-28-2546
To be published on 2019-11-21 by SAE International in United States
MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES Santosh Swamy, Gulshan Noorsumar, Shivakumar Chidanandappa General Motors Technical Center, India Keywords Hood; Head Injury Criterion (HIC); Stiffness; Shape optimization; Multi-Disciplinary Optimization (MDO) Research and/or Engineering Questions/ Objective The objective of this work is to obtain a light weight hood which has least possible mass, and at the same time meets all contradicting performances of pedpro (pedestrian protection) and structural stiffness disciplines. Passenger vehicles have stringent safety norms from pedpro perspective to meet child and adult head injury criteria (HIC). These pedestrian safety requirements often conflict with structural stiffness performance criteria which pose a challenge for most automotive OEMs. Therefore, there is a growing need for mass optimization and performance balancing to meet both the requirements simultaneously. Methodology The outlined method uses a CAE based Multi-Disciplinary Optimization (MDO) approach involving shape variables to find an optimum design for stiffness and pedpro performances. Adding slots along the vertical beam walls of the hood inner panel helps soften the area around the head impact location, thereby improving pedpro performance locally.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Suspension hard points optimisation

Altair Engineering-AshithKumar Shetty
  • Technical Paper
  • 2019-28-2419
To be published on 2019-11-21 by SAE International in United States
Objective This paper explores the usage of Altair simulation driven optimisation process, Front Suspension hard points of a sedan Car model are optimised for specific target toe curves using MotionView, MotionSolve and HyperStudy This process gives the optimal hard point values to match the target curves without much iterations. Methodology Parametric Multibody model of the front end of sedan is built in MotionView. To Carry out optimisation HyperStudy is used where few of the suspension hard points which affect the toe curves are chosen as design variable. For the chosen Design variables upper and lower bound limits are specified. Ride, Roll and lateral force tests are performed. Optimisation is performed using HyperStudy where it iterates the suspension hard points to match the target toe curves. Each iteration response can be visualized in HyperStudy and can be compared with the target toe curve. Hyperstudy points the iteration which is closest to the Target curve Advantage • Quick model setup and run time • Parametric model allows quick change in design • Insight at early design stage…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design of Lightweight Composites for Vehicle Front End Energy Management of Bumper Beam

Indian Institute of Technology-Balasubramanian Muthiah, Velmurugan Ramachandran
Mahindra & Mahindra, Ltd.-Praveen Kumar, Sarma Sr Akella, Ayan Chakraborty, Shankar M Venugopal
Published 2019-10-11 by SAE International in United States
Application of advance composites in place of the various conventional materials such as steel can give significant weight and performance advantages. The application of composites is now finding it’s way in the automotive industry due to the growing requirement of the lightweight solutions and high strength to weight ratio. However, their low mechanical properties have limited their application in automotive structural components. The study presented here is focused on the explicit dynamic analysis of a bumper beam and advance composites are used for the study. Different configurations and designs of the bumper are considered to be able to make a comparative study of the stress and deformation levels. The analysis was done in coherence to the Euro NCAP tests and the offset frontal impact analysis was done. The boundary conditions were aligned with the real time impact conditions for proper prediction of the results. Based on stress, deformation, specific strength and weight, the replacing materials for existing steel bumper are considered and the corresponding energy absorption are calculated. Laminated composites such as Glass, Carbon and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Numbering Systems for End Mills

Motor Vehicle Council
  • Ground Vehicle Standard
  • J2342_201910
  • Current
Published 2019-10-09 by SAE International in United States
This SAE Recommended Practice provides a systematic method for the identification of End Mills. It is intended to assist in the cataloging and supplying of these tools. NOTE 1— Caution must be taken when assigning codes for designation to prevent specifying cutting tools that cannot be physically or economically manufactured. NOTE 2— In particular without limitation, SAE disclaims all responsibility for the accuracy or completeness of information contained within this report if the standards of this report are retrieved, combined, or used in connection with any software.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Solid-State Microwave Power Module

Aerospace & Defense Technology: October 2019

  • Magazine Article
  • 19AERP10_05
Published 2019-10-01 by SAE International in United States

Historically, the term microwave power module (MPM) has been associated with a small, fully integrated, self-contained radio frequency (RF) amplifier that combines both solid-state and microwave vacuum electronics technologies. Typically, the output power of these MPMs is on the order of about 100 Watts CW over an octave bandwidth. Because of their smaller size and lower mass compared to conventional traveling-wave tube amplifiers, these MPMs may have applications in electronic warfare systems.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Three-Point Hitch (Type A) Backhoe Personnel Protection

OPTC1, Personnel Protection (General)
  • Ground Vehicle Standard
  • J1518_201908
  • Current
Published 2019-08-28 by SAE International in United States
This SAE Recommended Practice applies to three-point hitch (Type A) backhoes as defined in SAE J326 when mounted on either an agricultural tractor as defined in ANSI/ASAE S390 or other off-road self-propelled work machine as defined in SAE J1116. This criterion is intended for the manufacturer of the backhoe, whether or not the backhoe is manufactured or marketed by the same company that manufactures or markets the propelling machine.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Developing a Theory for Active Grille Shutter Aerodynamics—Part 1: Base Theory

Porsche AG-Thomas Wolf
Published 2019-06-07 by SAE International in United States
The aim is to develop a theory to describe the aerodynamic behavior of active grille shutters (AGS). The theory correlates the cooling air mass flow and drag of a vehicle with the angle and number of air flaps on the AGS. The relatively simple mathematical formulation of this theory provides an insight into the aerodynamic behavior and characteristic curve shape of AGS. It illustrates how the number of air flaps changes and influences the shape of the AGS characteristic curve. The theory is validated by experiments using wind tunnel measurements on real vehicles with AGS. The comparisons show good agreement between theory and experiment.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling and Validation for the Hysteretic Behavior of an Automatic Belt Tensioner

BYD Auto Industry Company Limited-Pu Xu
South China University of Technology-Shangbin Long, Xuezhi Zhao, Wen-Bin Shangguan
Published 2019-06-05 by SAE International in United States
An automatic tensioner used in an engine front end accessory drive system (EFEADS) is taken as a study example in this paper. The working torque of the tensioner, which consists of the spring torque caused by a torsional spring and the frictional torques caused by the contact pairs, is analyzed by a mathematic analysis method and a finite element method. And the calculation and simulation are validated by a torque measurement versus angular displacement of a tensioner arm. The working torques of the tensioner under a loading and an unloading process are described by a bilinear hysteretic model, and are written as a function with a damping ratio. The rule of the action for the damping devices is investigated based on the simulation and a durability test of the tensioner. A finite element method for the tensioner without damping device is established. Then the radial deformation for the torsional spring under an unconstrained state is obtained. The analysis results have a good correlation with the measurements. The method presented in this paper is beneficial for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

EDITORIAL: The unforgettable pyramid on the hood

Automotive Engineering: June 2019

Editor-in-Chief-Lindsay Brooke
  • Magazine Article
  • 19AUTP06_08
Published 2019-06-01 by SAE International in United States

If you're old enough to remember 1990, you may recall the best television ad of the year. It showed the front end of the all-new Lexus LS400 sedan against a black background. A multi-level pyramid of champagne glasses glistened in the center of the car's hood.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Interior Sound Quality Refinement Base on Mechanism Study of Crankshaft Impact Noise

GAC Automotive Engineering Institute-Zhangming Su, Hanshuang Chen, Qi Yang, Dandan Kong, Weizhe Xing, Yanghui Xu
South China University of Technology-Xuelu Cao
Published 2019-04-02 by SAE International in United States
A rumbling noise is audible in a vehicle passenger compartment during acceleration. Mechanism detail of the rumbling noise is studied. A series of preliminary transfer path experiments investigation on chassis dynamometer shows that the interior rumbling noise is mainly induced by abnormal crankshaft impact at particular crank angle. Spectrum analysis indicates that high level half order harmonic components significantly affects the rumbling noise. Multi-body dynamics model of the powertrain is developed to further investigate the root cause of the abnormal crankshaft impact. Experiment results are used to verify the numeric model. High deviation of main bearing forces at the crank angle 0° to 180° after the Fire Top Dead Center of the no.l cylinder is considered to fundamentally induces the high level half order components. The force ripple coupled with the crankshaft resonance induces the crankshaft rumbling. Sensitivities analysis of various bearing seat structure, crankshaft structural parameters were carried out. The ladder frame, a stiffened crankshaft with bigger overlap and shortened the front end offset distance seem effectively reduce the rumbling impact and improve interior…
Annotation ability available