Your Selections

Injuries
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Optimization of vehicle side panel to improve crashworthiness.

Kichumon Haldus
  • Technical Paper
  • 2019-28-2573
To be published on 2019-11-21 by SAE International in United States
The front of a car, though susceptible to the biggest impacts in terms of magnitude, has space and additional reinforcement to incorporate various safety measures. The rear has considerable amount of space to contain a proper crash box. The side of the car, though, doesn’t have this flexibility in design, the main limiting parameter being space. Any intrusion into the passenger cabin can result in serious injury or even death. The objective of this work is to improve the crashworthiness of a vehicle’s side so as to reduce intrusion into the passenger cabin. The work is focused on optimizing the door and B pillar. The optimized side panel is compared with the baseline model as per standard. ANSYS solver is used for the simulation. The optimized design applied to the door and B pillar will significantly improve crashworthiness of the vehicle side panel as a whole.
 

Load Distribution Optimization of seatbelts using validated finite element approach.

anshul satija-Anshul Satija
  • Technical Paper
  • 2019-28-2575
To be published on 2019-11-21 by SAE International in United States
The seat belt system is one of most imperative component of the safety instrument family in a vehicle. The main purpose of seat belt is to minimize the injuries by preventing the occupant from impacting hard interior parts of the vehicle and also the passenger from being thrown-out from the vehicle in case of rollover accidents. The standard three-point belts, mounted to the vehicle in three places, namely anchor, D ring and buckle. The position of D ring is very important to distribute the impact load evenly to the occupants. Very high load in any of these locations could cause breakage of the mountings and also concentrated loading on the occupant chest of pelvis. This study mainly focuses on the seatbelt assembly performance improvement against ECE-R16 sled test. The sled test was carried out first using 28g peak acceleration pulse and measurement of forces at shoulder and anchor position was measured using the load cell. FE (Finite Element) model of the complete seatbelt assemble was developed including buckle, retractor and anchor plate. The simulation was…
 

Injury Reduction in Vehicle to Pedestrian Collision using Deployable Pedestrian Protection System in Vehicles

International Centre For Automotive Tech-Jitendra Singh Gaur
  • Technical Paper
  • 2019-28-2551
To be published on 2019-11-21 by SAE International in United States
Head injuries are the main source of road fatalities in when a pedestrian is involved in an accident with the vehicle. The frontal part of vehicle such as engine hood, lower-windshield area and A-pillars are the possible location of head impact in such accidents. The head impact with hard points located in these areas result in the fatal head injuries. The effect of impact can be reduced by using the deployable pedestrian protection systems (DPPS) such as hood-lifters and windshield airbag in the vehicle. The study shows how these systems are effective in reducing the fatalities in pedestrian accidents and how to evaluate the performance of these deployable systems.
 

System level design of a self-stabilizing two-wheeler suspension concept

Chalmers University-Dhurai Prabhahar
Sastra Deemed University-Hariharan Sankarasubramanian
  • Technical Paper
  • 2019-28-0127
To be published on 2019-10-11 by SAE International in United States
Two-wheeler represent one of the most used mode of transport in countries like India. The data from NCRB shows that most injuries to two-wheeler motorists are after being thrown off the vehicle. A self-stabilized combined with enclosure prevents serious injury in case of a skidding of the two-wheeler. The primary objective of the work is to create a suspension system for the enclosed self-balancing two-wheeler such that it can withstand the load of the vehicle itself and the extra payload. Ride comfort was primary objective of the work. The suspension system was modeled from the first principles, solved using MATLABTM SIMULINKTM and kinematics simulation was performed to learn the behaviour of the system in MSC ADAMSTM. Dynamic simulations were also carried out to check if the forces were under permissible levels for overall design. The parameters considered for the work were hard-points, suspension stiffness and damping. With manual parameter iterations, suspension parameters were tuned for optimal suspension travel, load transmission and power transmission to ground. The work presents a concept for suspension system verified for…
 

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

Ford Motor Company-Silvia Faria Iombriller, Wesley Bolognesi Prado, Marco Andre Silva
  • Technical Paper
  • 2019-01-2141
To be published on 2019-09-15 by SAE International in United States
Analysis of road accident has showed that an important portion of fatal crashes involving commercial vehicles is caused by rollovers. ESC systems in commercial vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurences of jackknifing conditions. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov 1st, 2011 for new types of vehicle and Nov 1st 2014 for all new vehicles), including commercial vehicles, trucks and trailers. On 2015, NHTSA published Federal Motor Vehicle Safety Standard (FMVSS) No. 136, Electronic stability control systems for heavy vehicles, requiring electronic stability control (ESC) systems on truck tractors and buses with a gross vehicle weight rating greater than 11,793 kilograms (26,000 pounds) that were implemented until 2017. In South America, CONTRAN Resolution 641/2016 establishes mandatory installation of Electronic Stability…
 

Vascular Injury Shunt

  • Magazine Article
  • TBMG-34597
Published 2019-06-01 by Tech Briefs Media Group in United States

Extremity vascular injury results in bleeding and lack of blood flow beyond the site of vessel disruption (ischemia). Priorities when this occurs include hemorrhage control, management of life-threatening injuries, and restoration of flow to the extremity. While definitive vessel repair is optimal, life-threatening injuries often prohibit this option. Alternatively, a temporary vascular shunt (a small-caliber hollow plastic tube) may be placed in the uninjured segments of vessel above and below the disruption to restore blood flow until conditions improve, and the shunt can be removed and repair performed.

 

New Electromyography Biofeedback Device

  • Magazine Article
  • TBMG-34594
Published 2019-06-01 by Tech Briefs Media Group in United States

Anew electromyography biofeedback device that is wearable and connects to novel smartphone games may offer people with incomplete paraplegia a more affordable, self-controllable therapy to enhance their recovery, according to a new study. Electromyography (recording electrical activity of muscles) biofeedback has been shown to enhance recovery of muscle control in people with incomplete spinal cord injury. However, existing biofeedback therapy devices are expensive and can be operated only by trained personnel in a laboratory environment. These factors prevent many people — up to 50,000 in the United States — from accessing the biofeedback therapy that could benefit their recoveries.

 

Stapp Car Crash Journal Vol. 62, 2018

  • Book
  • B-STAPP2018
Published 2019-04-30 by The Stapp Association in United States
This title includes the technical papers developed for the 2018 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes. The topics covered this year include: • Effect of restraints on chest deflection • Thoracic response in dynamic front loading • Side impact assessments and comparisons • Front airbag deployment rates and implications • Reanalysis of experimental brain strain data • Modeling pedestrian impacts • Short communications o New data on the biomechanics of injury and human tolerance, new methods and tools to study the biomechanics of injury, new developments in occupant protection systems, and new concepts on the biomechanics of injury based on experimental and analytical studies.
 

Thoracic Spine Extension Injuries in Occupants with Pre-Existing Conditions during Rear-End Collisions

Exponent, Inc.-Mathieu Davis, Jessica Isaacs, Martin Graber, Jacob Fisher
Published 2019-04-02 by SAE International in United States
Certain ankylosing spondyloarthropathies such as ankylosing spondylitis (AS) or diffuse idiopathic skeletal hyperostosis (DISH) can substantially alter clinicopathologic spine biomechanics as well as injury mechanisms in rear-end motor vehicle collisions. AS is an inflammatory disease which can lead to structural impairments of the spine secondary to flowing ossification along the spinal column, including ossification across the spinal discs, facet joints, and ligaments, and it has also been associated with diffuse osteoporosis of the spine. DISH is characterized by excess bone formation along the spinal column, encompassing the annulus and forming the thickest and strongest bridging osteophytes over adjacent vertebral bodies at the level of the disc space. In both conditions the spine is mechanically stiffened and generally more kyphotic than a healthy spine. This paper presents a series of case studies in which a front-seat occupant with ankylosing spondyloarthropathy experienced a moderate- or high-speed rear-end collision and sustained a thoracic spine fracture/dislocation, often with spinal cord injuries. Forward acceleration of the occupant by the seat back in each case resulted in straightening of the kyphotic…
Datasets icon
Annotation icon
 

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

Chongqing University-Yunlei Yin, Junming Li, Qingmiao Wang
State Key Lab of Veh NVH & Safety Technology/Chongqing Univ-Wenxiang Dong, Zhenfei Zhan
Published 2019-04-02 by SAE International in United States
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks. The multiple peak points were selected to expand landmarks set, so as to improve the morphing quality compared…
Datasets icon
Annotation icon