Your Selections

Hydrocarbons
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Comparative Experimental Investigation of Thumba and Argemone Oil Based Dual Fuel Blend in a Diesel Engine for Its Performance and Emission Characteristics

Lovely Professional University-Sumit Kanchan
University of Kashmir-Shahid Qayoom
  • Technical Paper
  • 2019-28-2375
Published 2019-11-21 by SAE International in United States
An experimental investigation was conducted to explore the possibility of using the Thumba oil (Citrullus colocyntis) and Argemone Mexicana (non-edible and adulterer to mustard oil) as a dual fuel blend with diesel as an alternative of using pure diesel for its performance and emission characteristics.The work was carried on a single cylinder, four strokes, In-line overhead valve, direct injection compression ignition engine. The argemone and Thumba biodiesel were produced using the transesterification process and thereafter the important physio-chemical properties of produced blends were investigated. Four dual biodiesel blends like B10 (5% Argemone, 5% Thumba and 90% Diesel), B20, B30 and B40 were prepared for investigation process. The operating conditions adopted for the study was the entire range of engine loads and speed (1000-1500 r/min) keeping the injection pressure and injection timing at the OEM settings.In this exertion, performance and emission parameters were evaluated. The performance parameters like brake thermal efficiency (BTE), indicated power, brake specific fuel consumption (BSFC), brake mean effective pressure, indicated mean effective pressure and indicated thermal efficiency were studied and compared with…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of Low Cost Closed Crankcase Ventilation With Oil Mist Separation System on Light Duty Diesel Engine

Tata Technologies, Ltd.-Vishal Kailas Walhekar, Sujit Gavade, Gaurav Soni, Aashish Bhargava
  • Technical Paper
  • 2019-28-2578
Published 2019-11-21 by SAE International in United States
Currently automotive industry is facing bi-fold challenge of reduction in greenhouse gases emissions as well as low operating cost. On one hand Emission regulations are getting more and more stringent on other hand there is major focus on customer value proposition.In engine emission the blow by gases are one of the source of greenhouse gases from engine. Blow-by gases not only consist of unburnt hydrocarbons but also carry large amount of oil. If oil is not separated from these gases, it will led to major oil consumption and hence increase total operating cost of Vehicle.Considering the above challenges, effort taken to develop a low-cost closed crankcase ventilation with oil mist separation system on diesel engine. For cost-effective solution, two different design and configuration of oil mist separation system developed.Further, engine with two different above said configuration has been tested for blow-by gasses and oil consumption measurement on Engine test bed and vehicle to understand the behavior in real environment. Further results compared for both configuration and further actions proposed.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Automobile Exhaust Emmision Control- A review

Manav Rachna International University-Sunny Bhatia
  • Technical Paper
  • 2019-28-2382
Published 2019-11-21 by SAE International in United States
Since the 20th century increase in the number of cars in the major cities is been a point of concern because of the toxic gasses being emitted from the engine of an automobile. These gasses are polluting the atmosphere and degrading the air to breathe. The main gasses responsible for the degradation of air quality are carbon monoxide, hydrocarbon and oxides of nitrogen. There is a necessity to find ways to reduce the pollution emitted into the atmosphere from the automobile. The source of emission is either evaporation from fuel tank or carburetor which is easy to be dealt with or harmful gasses due to improper combustion which is a concern for the environment. The two ways to reduce these emissions are, modification in the engine to minimize the production of harmful gases and to treat the harmful gasses emitted from the engine before blowing it into the atmosphere from the exhaust. Catalysts help to break harmful gasses into smaller compounds that are environment-friendly. The catalysts used are Rhodium Palladium and platinum, these make a…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessing the Combined Outcome of Rice Husk Nano Additive and Water Injection Method on the Performance, Emission and Combustion Characters of the Low Viscous Pine Oil in a Diesel Engine

Anna University Chennai-Mebin Samuel P, Devaradjane Gobalakichenin
University College of Engineering Villupuram-Gnanamoorthi V
Published 2019-10-22 by SAE International in United States
The research work intends to assess the need and improvement by using a low viscous bio oil, RH (rice husk) nano particles and water injection method in enhancing the performance, emission and combustion characters of a diesel engine. One of the major setbacks for using biodiesel is its higher viscosity. Hence, a low viscous oil (pine oil) which does not need transesterification process was used as a biofuel in this study. Further, to improve its characteristics a non-metallic nano additive produced from rice husk was added at 3 proportions (50, 100, 200 ppm) and the optimal quantity was found as 100 ppm based on the BTE (brake thermal efficiency) value of 30.2% at peak load condition. This efficiency value was accompanied by a considerable decrease in pollutants like HC (hydrocarbon)-34.8%, Smoke-31.6%, CO (carbon monoxide)-43.7%. On the contrary, NOx (oxides of nitrogen) emission was found to be increased for all load values. At peak load, when compared with diesel, pine oil with RH has 19.3% increased NOx emission. To reduce this increased NOx emission, water was…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characteristics Investigation on Di Diesel Engine with Nano-Particles as an Additive in Lemon Grass Oil

Mepco Schlenk Engineering College-Dhinesh Balasubramanian
Sri Krishna College of Enggineering and Technology-Karthickeyan Viswanathan
Published 2019-10-11 by SAE International in United States
In this experimental study, combustion, performance & emission characteristics of a single cylinder D.I. diesel engine is analyzed using lemon grass oil and diesel blend B20. The alumina (Al2O3) nano-particles of 10, 20 and 30 parts per million (B20A10, B20A20, B20A30) are assorted with prepared fuel blend through an ultrasonicator which would help to fetch an unvarying suspension of nano-particles over the blend fuel. SEM analysis and X-ray diffraction have been done for the alumina nano-particles to test the size of the particles that are blended to the bio-fuel blends. The chemical reactivity and rate of mixing are better though the characteristics of nano-particles exhibit high exterior area/capacity ratio during combustion that ultimately results in good characteristics of a diesel engine. Among test fuels, B20A20 shows healthier performance both in relationships of efficiency & emissions such as Nitrous oxide (NOx), hydrocarbon (HC), Carbon monoxide (CO), and Smoke. The ŋBTE for fuel B20A20 is significantly improved by 11.5% when it is compared to the fuel B100. The HC emission is decreased by 40%, CO emission reduced…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis of Emissions in the European Driving Cycle of Used Light-Duty Vehicles Imported to Europe from North America

SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy

State Road Transport Research Institute, Ukraine-Oleksiy Klymenko, Viktor Ustymenko, Kostiantyn Kolobov, Sergiy Rychok, Mykola Hora, Nila Naumenko
  • Journal Article
  • 13-01-01-0001
Published 2019-09-13 by SAE International in United States
This study analyzes the distribution of exhaust mass pollutants emission obtained in 1,157 tests in the European driving cycle of used light-duty vehicles (LDVs). At the time of production, the tested vehicles complied with the Federal environmental requirements of the United States (USA) and were imported to Europe from North America. They included 1,109 passenger cars (PCs) and 48 light-duty trucks (LDTs), equipped with gasoline engines. In general, for measured emissions of carbon monoxide (CO), nonmethane hydrocarbons (NMHC), nitrogen oxides (NOx), and particulate matter (PM): 25% of test results for PCs do not exceed the T2B5 limits of the US Federal Standard; 43% of test results for PCs do not exceed the thresholds, designated for on-board diagnostic system (OBD) proper functioning; 45% of test results for PCs do not exceed the European Union (EU)’s former standard “Euro-5” norms. The automotive manufacturers of the PCs group represented various legislative and engineering approaches in Europe (Volkswagen, VW), Japan (Mazda), and North America (Ford) that are reflected in the emissions analysis results. In particular, the stricter CO limits…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

Universita degli Studi di Perugia-Luca Ambrogi, Michele Battistoni, Lorenzo Gasbarro
West Virginia Univ.-Jinlong Liu, Cosmin Dumitrescu
Published 2019-09-09 by SAE International in United States
Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure. In addition, a low MN increased the thermal efficiency despite the higher heat transfer to the surroundings. Also, a higher MN reduced the nitrogen-oxides emissions but increased unburned hydrocarbons (UHC) emissions. Moreover, while UHC emissions…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Ethanol and Aromatic Hydrocarbons on Particulate Emissions from a Gasoline Vehicle

IFP Energies Nouvelles, France-Toni Tahtouh, Arij Ben Amara, Patricia Anselmi, Laurie Starck
Published 2019-09-09 by SAE International in United States
The impact of transport on global and local pollution has resulted in stricter emission limits. More specifically, increasing attention is being paid to exhaust gas particulate emissions in spark ignition engines. The particulate formation is mainly affected by: 1-engine and fuel system characteristics, 2-fuel properties and 3-exhaust aftertreatment system. In order to estimate the influence of fuel characteristics on particulate emissions, several research works have proposed fuel indices that correlate some of the fuel physical and chemical properties with engine particulate emissions.This work investigates the impact of fuel composition on particulate emissions and evaluates the Honda Particulate Matter Index (PMI) proposed by Aikawa et al. and other fuel indices in terms of agreement with vehicle test bed results for a passenger car.Vehicle tests were performed on New European Driving Cycle (NEDC) and Worldwide Harmonized Light Vehicles Test Cycle (WLTC) by using an E10 Euro VI reference fuel and five different fuel blends with 10% to 20% of ethanol and 23% to 35% of aromatic hydrocarbons content by volume. The effect of aromatic hydrocarbons composition on…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library

Convergent Science Inc.-Kuiwen Zhang, Mandhapati Raju, Peter Kelly Senecal
Lawrence Livermore National Lab-Scott Wagnon, William Pitz
Published 2019-09-09 by SAE International in United States
The Computational Chemistry Consortium (C3) is dedicated to leading the advancement of combustion and emissions modeling. The C3 cluster combines the expertise of different groups involved in combustion research aiming to refine existing chemistry models and to develop more efficient tools for the generation of surrogate and multi-fuel mechanisms, and suitable mechanisms for CFD applications. In addition to the development of more accurate kinetic models for different components of interest in real fuel surrogates and for pollutants formation (NOx, PAH, soot), the core activity of C3 is to develop a tool capable of merging high-fidelity kinetics from different partners, resulting in a high-fidelity model for a specific application. A core mechanism forms the basis of a gasoline surrogate model containing larger components including n-heptane, iso-octane, n-dodecane, toluene and other larger hydrocarbons. Moreover, poly-aromatic hydrocarbon modules are developed in addition to a NOx formation module. This work describes the challenges and approach for merging the different modules, discussing and analyzing the results from the model, obtained by comparing with experimental targets typically used for model validation…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Exhaust Purification Performance Enhancement by Early Activation of Three Way Catalysts for Gasoline Engines Used in Hybrid Electric Vehicles

NE Chemcat Corporation-Makoto Nagata
Waseda Univesity-Toshinori Okajima, Ryota Sone, Xieyang Yan, Ryoya Inoue, Suchitra Sivakumar, Hajime Shingyouchi, Jin Kusaka, Kyohei Yamaguchi
Published 2019-09-09 by SAE International in United States
Three-way catalyst (TWC) converters are used to remove harmful substances (e.g., carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC)) emitted from gasoline engines. However, a large amount of emissions could be emitted before the TWC reaches its light-off temperature during a cold start. For hybrid electric vehicles (HEVs) powered by gasoline engines, the emission purification performance by TWC converters unfortunately deteriorates because of mode switching from engine to battery and vice versa, which can repeatedly generate cold start conditions for the TWCs. In this study, aiming to reduce emissions from series HEVs by early activation of TWCs, numerical simulations and experiments are carried out. An HEV is tested on a chassis dynamometer in the Worldwide Light-duty Test Cycle (WLTC) mode. The upstream and downstream gas conditions of the close-coupled catalyst converter are measured. A test piece is taken from the same catalyst and used in model gas experiments to decide the chemical reaction scheme and each corresponding reaction rate parameter. A 1-D numerical simulation TWC model, which includes 13 chemical species with 22 global…
This content contains downloadable datasets
Annotation ability available