The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

High voltage systems
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures considering Fuel Economy and Battery Lifetime

McMaster University-Phillip Kollmeyer, Ali Emadi
Politecnico di Torino-Pier Giuseppe Anselma, Giovanni Belingardi
  • Technical Paper
  • 2020-37-0015
To be published on 2020-06-23 by SAE International in United States
Hybrid Electric Vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at early design stage of HEVs, engineers usually focus on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance solely. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options. Subsequently, three different HEV powertrain architectures are considered as test cases for the developed HEV assessment methodology including parallel P2, series-parallel P1P2 and power-split layouts. A comparison of numerical results for the three HEV powertrain test cases is then performed in terms of optimal fuel economy…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

High Voltage Battery durability enhancement in electric mobility through 1D CAE

Tata Motors Ltd-Sambhaji Jaybhay, Kiran Kadam, Sangeet Kapoor
Tata Motors, Ltd.-Santosh Kumar Venu
  • Technical Paper
  • 2020-28-0013
To be published on 2020-04-30 by SAE International in United States
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High voltage battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through battery cooling system (BCS) is critical for vehicle range and battery durability This work focus on two aspects BCS sizing and coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE by using KULI software from M/s Magna Steyr. The objective is to develop a model of battery cooling system in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range. Iterations were carried out to maintain uniform flow at the battery packs as well as to sustain target coolant flow requirement in order to maintain thermal uniformity across the battery packs 1D simulation is vital when it comes to analyzing…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Investigation of Dual AC System used for Battery cooling plate

Subros Ltd-Kamlesh Kumar Singh
Subros, Ltd.-Somnath Sen
  • Technical Paper
  • 2020-28-0021
To be published on 2020-04-30 by SAE International in United States
As the global warming due to carbon footprint is very alarming, vehicle emissions are getting stringent day by day. In such situation vehicle hybridization or fully electric vehicles are of obvious choices. However in any of the cases the battery cooling is a big concern area. As the heat produced by the battery need to be dissipated within no time to prevent failure, it is of utmost need to develop and understand the battery cooling system. Present paper describes the experimental investigation of a battery cooling circuit. A complete bench comprising of both primary and secondary circuit is used for the testing. The primary circuit has a cooling unit with TXV, condenser and electric compressor run by high voltage. The secondary circuit consists of a chiller (integrated with TXV) unit responsible for battery cooling. The whole circuit typically resembles with one of dual air conditioning unit and uses one of known refrigerant used in vehicle AC system. However each circuit is connected with a valve for controlling the loop. The battery heat was represented by…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cabin and Battery Cooling Performance Trade-off in an Electric Vehicle

Tata Motors Ltd-Sambhaji Jaybhay, Kiran Kadam, Santosh Venu, Shridhar Kulkarni, Sangeet Kapoor
Tata Technologies Ltd.-Mohit Varma
  • Technical Paper
  • 2020-28-0004
To be published on 2020-04-30 by SAE International in United States
Electric vehicle (EV) carries two main anxieties in users which are its range and battery life, hence these are important parameters to take care during electric vehicle development. EV range depends on many parameters like vehicle weight, parasitic loads like cabin Heating, Ventilation and Air Conditioning (HVAC), battery and traction cooling, accessories, etc. which consumes power from a High Voltage (HV) battery. Severe hot ambient in India asks for big size AC system, on the other hand, battery pack needs refrigerated cooling system to keep its temperature in control. Hence, the major parasitic consumers in an EV are HVAC and BCS systems. In order to enhance the overall efficiency, a trade-off between these two systems is crucial, as both the systems are served with common compressor and condenser in dual loop refrigerant circuit. This work comprises of experiments done on an EV with dual loop refrigerant circuit, which has common compressor and condenser unit, where the HVAC circuit has a separate thermostatic expansion valve (TXV) with evaporator installed for cabin cooling and separate TXV with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simplified Approach to Model a HEV/PHEV/Battery Vehicle Cooling System in 1D and validating using DFSS methodology

Detroit Engineered Products (DEP), Inc.-Toukir Islam
FCA Engineering India Pvt,, Ltd.-Tharunnarayanan Arthanari, Amit Kumar, Vaibhav Patil, Dhananjay Autade, Kamalakannan J
  • Technical Paper
  • 2020-01-1386
To be published on 2020-04-14 by SAE International in United States
ABSTRACT Improving fuel economy and to satisfy more restrictive emission legislation the Vehicle electrification becomes more important one. Compared to the combustion engine a Hybrid electric vehicles / Plug-in hybrid electric vehicles will use energy from the grid to recharge their high voltage battery and this is converted with much higher efficiency, and less CO2 emission so they will have a significant role in the present transition from conventional to electric vehicles. The addition of new components, such as power electronics, electric machine and high voltage battery, increases the maximum torque available and the energy stored on-board, but increases the weight as well. In addition, although they have really high efficiency, they produce a significant amount of heat that has to be removed. Another thermal management issue in PHEV and BEV is cabin heating, since the engine heat is not available. To guarantee system efficiency and reliability, a completely new thermal management layout has to be designed. The time and cost spent on a real time model of new cooling system will be more which…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Vehicle Design Considerations Enabling High-Performance Charging

Magna Steyr Fahrzeugtechnik AG & Co. KG-Christian Josef Paar, Helmut Martin Waser, Heimo Kreimaier, Inés Cuenca-Jaen, Florian Eibler
  • Technical Paper
  • 2020-01-1440
To be published on 2020-04-14 by SAE International in United States
Customer requirements such as range anxiety and charging time are the driver for increasing the charging power of battery-electric vehicles (BEV). High-performance charging (HPC) theoretically enables time targets of faster than 30 kilometers (19 miles) recharging per minute. Due to physical limitations (i.e., current limits of the components) a charging power of more than 200 kilowatt arises the question of the voltage level required to fulfill the power demand. One possible approach to achieve a high charging power is increasing the battery voltage, i.e., increase the voltage level from 400 V to 800 V. This publication discusses the main aspects of charging by incorporating all high-voltage components in the vehicle. An increase of the voltage level and charging power affect all high-voltage components. The thermal management of the battery has to be considered. High-voltage vehicle architecture design considerations are discussed including thermal-management and battery-design aspects. Different charging characteristics from electric vehicles (EVs) available, are compared with an estimated fast charging profile which is based on theoretical background of available cells including consideration of physical and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of New Power Control Unit with Small Size and Low Cost for Small Hybrid Vehicle with Two-motor Hybrid System

Honda R & D-Yuichiro Ueno, Yasuhiko Kondo
Keihin Corp.-Kenichi Nonaka, Kenichi Takebayashi, Yukiya Kashimura
  • Technical Paper
  • 2020-01-0458
To be published on 2020-04-14 by SAE International in United States
A new power control unit (PCU) has been developed for a Honda small hybrid vehicle with a two-motor hybrid system launched in 2020. For small hybrid vehicles, downsizing and reducing costs of hybrid systems are major challenges. As such, there were emphatic requirements for the newly developed PCU to be small and affordable. To satisfy these requirements for the PCU, new technologies and components have been introduced such as an all-in-one type intelligent power module (IPM) with integrated functions and reverse conducting IGBT (RC-IGBT), a new control sequence for voltage control unit (VCU), and revised PCU packaging to improve cooling performance. The new IPM has a printed-circuit board (PCB) equipped with an electric control unit (ECU) and gate drive circuits, 7 current sensors, and a power module with RC-IGBTs. This functional integration led to a reduction in the number of main electrical PCU assembly components from 9 in the previous PCU to 2 in the new PCU. In addition, the number of mounted parts on the PCBs was reduced from 2,200 to 1,300 by means…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Modular Gasoline Engine Family for Hybrid Powertrains: Balancing Cost and Efficiency Optimization

AVL LIST GmbH-Wolfgang Schoeffmann, Michael Howlett, Alois Fuerhapter, Paul Kapus, Christoph Sams, Helfried Sorger
  • Technical Paper
  • 2020-01-0839
To be published on 2020-04-14 by SAE International in United States
The electrification of the powertrain is a prerequisite to meet future fuel consumption limits, while the internal combustion engine (ICE) will remain a key element of most production volume relevant powertrain concepts. High volume applications will be covered by electrified powertrains. The range will include parallel hybrids, 48V- or High voltage Mild- or Full hybrids, up to Serial hybrids. In the first configurations the ICE is the main propulsion, requiring the whole engine speed and load range including the transient operation. At serial hybrid applications the vehicle is generally electrically driven, the ICE provides power to drive the generator, either exclusively or supporting a battery charging concept. As the ICE is not mechanically coupled to the drive train, a reduction of the operating range and thus a partial simplification of the ICE is achievable. The paper shows the advances on a modular powertrain technology approach with different combinations of ICE, electrification and transmission variants, based on an engine family architecture with common parts, machining and assembly concepts, as well as the feasibility to integrate different…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

48 V High-power Battery Pack for Mild-Hybrid Electric Powertrains

MAHLE International, GmbH-Martin Berger
MAHLE Powertrain, Ltd.-Jonathan Hall, Stephen Borman, Benjamin Hibberd, Michael Bassett, Simon Reader
  • Technical Paper
  • 2020-01-0441
To be published on 2020-04-14 by SAE International in United States
Mild hybridisation, using a 48 V system architecture, offers fuel consumption benefits approaching those achieved using high-voltage systems at a much lower cost. To maximise the benefits from a 48 V mild-hybrid system, it is desirable to recuperate during deceleration events at as high a power level as possible, whilst at the same time having a relatively compact and low cost system. This paper examines the particular requirements of the battery pack for such a mild-hybrid application and discusses the trade-offs between battery power capabilities and possible fuel consumption benefits. The technical challenges and solutions to design a 48 V mild-hybrid battery pack are presented with special attention to cell selection and the thermal management of the whole pack. The resulting battery has been designed to achieve a continuous-power capability of more than 10 kW and a peak-power rating of up to 20 kW. The pack has been built and has been subjected to a series of tests at a range of ambient temperatures. The performance of the pack has been validated and the main…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experiment and Simulation Study on Failure of High Voltage Cables under Indentation

Changan Automobile Co. Ltd.-Huili Yu, Fangyuan Shi
Tsinghua University-Yuanjie Liu, Yong Xia
  • Technical Paper
  • 2020-01-0199
To be published on 2020-04-14 by SAE International in United States
Failure of high voltage cables (HVCs) which sometimes occurs in electric vehicle collision is one of the fuses that leads to severe thermal runaway of the traction battery system, which has not gotten thorough investigations. This paper presents an experiment and simulation study on the failure behaviors of HVCs under indentation loadings. Tests were performed with different combinations of indenter (cylinder indenter with a diameter of 5 mm which was labeled as D5, cylinder indenter with a diameter of 15 mm which was labeled as D15 and wedge indenter with an angle of 60° which was labeled as V60) and loading speed (1.5 mm/min for quasi-static and 2m/s for dynamic). Experimental results indicated that the failure behavior of HVCs was both influenced by the indenter shape and loading speeds. Sharp indenter will led to a component failure sequence from outmost to innermost. For quasi-static loading, the peak force was 14.4 kN, 26.0 kN and 3.8 kN respectively for D5, D15 and V60 indentation, and the corresponding failure displacement was 10.7 mm, 10.5 mm and 9.8…