Your Selections

Power and Propulsion
Differential fluids
Differential gears
Limited slip differentials
Universal joints
Cardan joint
Constant-velocity joint
Exhaust systems
Catalytic converters
Exhaust manifolds
Exhaust pipes
Exhaust reactors
Exhaust system modules
Exhaust valves
Lean NOx traps
Particulate filters
Diesel particulate filters
Selective catalytic reduction
Fluid power systems
Hydraulic systems
Hydraulic control
Hydraulic drives
Hydraulic equipment
Hydraulic fittings
Hydraulic fluids
Hydraulic motors
Pneumatic systems
Fuel systems
Fuel / water separators
Fuel control
Fuel filters
Fuel injection
Fuel lines
Fuel pumps
Fuel sensors
Fuel systems modules
Fuel tanks
Adiabatic engines
Air cooled engines
Alternative fuel engines
Aluminum engines
Auxiliary power units
Boost pressure
Combustion and combustion processes
Air / fuel ratio
Compound engines
Diesel / compression ignition engines
Dual fuel engines
Electric motors
Engine components
Air cleaners
Engine control systems
Stop / start technology
Engine cooling systems
Water pumps
Engine lubrication systems
Engine mechanical components
Combustion chambers
Connecting rods
Engine cylinders
Thrust reversers
Engine mounts
Ignition systems
Ignition timing
Timing belts
Timing chains
Valve covers
Valve trains
Engine efficiency
External combustion engines
Steam engines
Stirling engines
Gas engines
Gas turbines
HCCI engines
Hybrid engines
Hydrogen engines
Jet engines
Scramjet engines
Turbofan engines
Turbojet engines
Turboprop engines
Lean burn engines
Marine engines
Multifuel engines
PCCI engines
Racing engines
Rocket engines
Booster rocket engines
Electro-thermal engines
Liquid propellant rocket engines
Solar rocket engines
Rotary engines
Single cylinder engines
Spark ignition engines
Stratified charge engines
Two stroke engines
Variable compression ratio engines
Variable valve timing
Automatic transmissions
Automatic transmission clutches
Clutch components
Dry disc clutches
Friction clutches
Magnetic clutches
Torque converters
Wet disc clutches
Continuously variable transmissions
Dual clutch transmissions
Electrically variable transmissions
Hydromechanical transmissions
Hydrostatic transmissions
Manual transmissions
Overdrive transmissions
Transmission control units
Transmission fluids
Transmission gears
Transmission linkages
Transmission valves
Vehicle drive systems
All wheel drive
Electric drives
Motor-in-wheel drives
Four wheel drive
Front wheel drive
Rear wheel drive
Show Only


File Formats

Content Types












Materials for DPF and its Cleaning Methodologies

ARAI-Kamalkishore Vora, Kartik Gurnule
  • Technical Paper
  • 2019-28-2565
To be published on 2019-11-21 by SAE International in United States
Accumulation of ash in the Diesel Particulate Filter (DPF) with engine operating over the time is a major concern for all vehicle manufacturers, with BS VI and BS VII emission norms mandating the use of DPF. Ash deposition leads to increase in pressure drop across the filter and more frequent regeneration pattern, which can lead to sintering. It can hamper the capacity of soot loading, properties of DPF substrate material and can lower catalyst activity in case of Catalysed-DPF. Hence, removal of ash is important by defining the DPF cleaning methods. Primary source of ash is lubricant oil, taking part in the combustion. Lubricant additives like detergents and anti-wear agents are responsible for formation of metallic ash inside the DPF. Secondary source of metallic ash is fuel and engine wear out. The present paper elucidates the preparation of DPF samples including coating and canning of DPF substrates, with proper GBD. Pressure drop and weight with and without coating is estimated and validated through actual measurement of fresh as well as soot loaded samples. Soot loading…

A Technical Review on Performance and Emissions of Compressed Natural Gas – Diesel Dual Fuel Engine

Indian Oil Corp Ltd-M. Muralidharan, M Subramanian
University of Petroleum and Energy Studi-Ajay Srivastava
  • Technical Paper
  • 2019-28-2390
To be published on 2019-11-21 by SAE International in United States
In view of the depletion of energy and environmental pollution, dual fuel technology has caught the attention of researchers as a viable technology keeping in mind the increased availability of fuels like Compressed Natural Gas (CNG). It is an ecologically friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion. Generally, dual fuel technology has been prevalent for large engines like marine, locomotive and stationary engines. However, its use for automotive engines has been limited in the past due to constraints of the limited supply of alternative fuels. CNG is a practical fuel under dual-fuel mode operation, with varying degree of success. The induction method prevents a premixed natural gas-air mixture, minimizes the volumetric efficiency and results in a loss of power at higher speeds. Under lower engine operating temperatures, at low-intermediate loads, the NOx emissions reduces however HC and CO emissions are significantly increased. This paper reviews the performance and emissions of compressed natural gas (CNG) – diesel dual fuel engine.

Engine Fuel Economy Optimization for different Hybrid Architectures using 1-D Simulation technique

Ajay Nain
  • Technical Paper
  • 2019-28-2496
To be published on 2019-11-21 by SAE International in United States
In order to improve fuel economy of the 3.3 litre tractor model, various kinds of engine hybridization is studied. This paper presents a methodology to predict engine fuel consumption using 1-D software by coupling Ricardo Wave and Ricardo Ignite. Engine fuel consumption and emission maps are predicted using Ricardo WAVE. These maps are used as an input to IGNITE for predicting cumulative fuel consumption. There is good agreement within 10% deviation between simulated cumulative fuel consumption and experimental cumulative fuel consumption. Same calibrated model is used further for studying series hybridization, parallel P1 type and Parallel P2 type of hybridization. A design of experiment (DOE) model is run for different electric motor sizes, battery capacity and battery state of charge condition, to understand their effects on overall engine fuel consumption and cycle soot emission. Model predicts overall significant reduction in cumulative fuel consumption and soot emission. Lower soot emission will leads to smaller exhaust after-treatment size. There is trade-off between higher cost due to hybridization and lower cost due to lower after-treatment size. A cost…

Noise and vibration simulations method for electric hybrid tractor powertrain.

Tafe Motors and Tractors Limited-Ishwinder Pal Singh Sethi, Anand Shivajirao Patil
  • Technical Paper
  • 2019-28-2469
To be published on 2019-11-21 by SAE International in United States
Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles. The following paper addresses these concerns and introduces a multi-physics simulation model to investigate and mitigate these effects. The multi physics simulation model presented in this paper incorporates the multi-disciplinary domain of internal combustion engine thermodynamics, electric components, mechanical systems, control systems and the vehicle response.

Design optimization for Engine mount

Prateek Sharma
VE Commercial Vehicles Ltd-Mahendra Parwal
  • Technical Paper
  • 2019-28-2540
To be published on 2019-11-21 by SAE International in United States
The mounting of an engine plays important role in controlling the vibration transmissibility, alignment of transmission unit within specific limit. Design of any mounting system mainly depends on stiffness, allowed deformation and transmissibility of force, natural frequency and size w.r.t space constraints etc. This paper helps to study the behavior of engine mount with different layer of rubber with defer stiffness. Firstly the design of front engine mount with single rubber layer according to space constraint in vehicle and then analysis is done to determine the deformation and various results using CAE technique. As per the results, design is modified with varying layer of rubber pad and again analysis is done with same boundary condition followed by improved results.

Usage of Telematics Data in Advance Powertrain Development

Honda Cars India Pvt Ltd-Anurag Anurag, Mohit Singhal, Isao Chiba, Kouji Okayasu
Honda Cars India Pvt, Ltd.-Shubham Garg
  • Technical Paper
  • 2019-28-2438
To be published on 2019-11-21 by SAE International in United States
To achieve accuracy in model development with large scale customer actual data in low cost and limited time usage of telematics system was adopted. Honda’s OBD II diagnostic connecting device Honda Connect was used as transceiver for this telematics system which was used as an accessory in Honda vehicles. Data collected with this device with large sample size and regional diversity across India was used in product development for Honda System. Control system development for BSVI vehicles, Idle start stop hardware specificaton selection and Battery electric vehicle target range study was done with Honda Connect Data.

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

ARC,SMEC,Vellore Institute of Technology-Saravanan S, Chidambaram Ramesh Kumar
  • Technical Paper
  • 2019-28-2577
To be published on 2019-11-21 by SAE International in United States
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust. A chamber was designed to effectively store the zeolite and it is attached to the exhaust port of the engine. The selected engine…

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

SVMIT Bharuch-Dr. Dipakkumar C. Gosai
SVNIT Surat-Anil Kumar Gillawat
  • Technical Paper
  • 2019-28-2548
To be published on 2019-11-21 by SAE International in United States
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion. The combination of this ceramic material produces excellent high-temperature thermal barrier coating (TBC) resistant to thermal cycling stresses and strains. The engine valves, engine heads, and engine pistons were thermal barrier ceramic coated and computerized experimental results were compared to the base engine. Experimental results justified TBC engine to give a…

Development of Dedicated Lubricant for Hydrogen Fueled Spark Ignition Engine

Indian Institute of Technology - Delhi-K A Subramanian
Indian Oil Corp Ltd-Verinder Kumar Bathla, Reji Mathai
  • Technical Paper
  • 2019-28-2511
To be published on 2019-11-21 by SAE International in United States
Hydrogen has low ignition energy ensures easy ignition of the ultra-lean mixture of H2+air also. The flame speed of hydrogen is about five times higher than methane and gasoline which allows hydrogen fuelled IC engines to have relatively reduced cyclic variations than that of with methane and gasoline. High flame speed also helps to make the combustion closer to constant volume which enhances the thermal efficiency of hydrogen fuelled IC engine. High octane number of hydrogen makes it suitable for its application in Spark ignition (SI) engines. Since the hydrogen combustion in spark ignition engine generates water which can interfere with the lubricant performance, different lubricant is to be developed for this purpose. In this background, the present work is aimed at the development of dedicated lubricant for hydrogen fuelled SI engine. This paper presents the various parameters required for evaluating different lubricants for hydrogen fuelled genset. Existing CNG genset has been converted into hydrogen genset with modification in intake manifold assembly, engine hardware system, ECU modification with adequate modification in exhaust system. State of…

An alternate cost effective material for rocker arm for heavy commercial vehicles

VE Commercial Vehicles, Ltd.-Sonu Paroche
  • Technical Paper
  • 2019-28-2550
To be published on 2019-11-21 by SAE International in United States
Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm. This is significant reduce in cost of material and assembly procedure. A 2-d simulation and finite element…