The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

SAE International Journal of Alternative Powertrains

  • Journal
  • V129-8EJ
To be published on 2020-06-30 by SAE International in United States
This is the electronic format of the journal.

SAE International Journal of Transportation Safety

  • Journal
  • V129-9EJ
To be published on 2020-06-30 by SAE International in United States
This is the electronic format of the journal

SAE International Journal of Transportation Cybersecurity and Privacy

  • Journal
  • V129-11EJ
To be published on 2020-06-30 by SAE International in United States
This is the electronic format of the journal.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multidisciplinary Investigation of Truck Platooning

Altair-Bastian Schnepf, Christian Kehrer, Christoph Maeurer
  • Technical Paper
  • 2020-37-0028
To be published on 2020-06-23 by SAE International in United States
In the age of environmental challenges and with it, the demand for increasing energy efficiency of commercial vehicles, truck platooning is discussed as a promising approach. The idea is several trucks forming an automated convoy – with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address fuel savings, traffic capacity, safety requirements and convenience. In our study, we will motivate why platooning requires a multidisciplinary approach in the sense of connecting different modeling and simulation methods. The simulation topics covered are aerodynamic analysis, vehicle-to-vehicle (V2V) communication, radar antenna placement and virtual drive cycle test for the energetic evaluation of a truck platoon in comparison to a single truck. Aerodynamic analyses are conducted using a transient Lattice Boltzmann approach on GPUs capturing the complex vehicle wake interactions for different platooning distances with acceptable computational effort. Thereby, a generic truck convoy, consisting of three vehicles, is considered for distance intervals between 7 and 40 meters. From these computations for each vehicle look-up-tables are derived for interpolation…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Identification of Automotive Cabin Design Parameters to Increase Electric Vehicles Range, Coupling CFD-Thermal Analyses with Design for Six Sigma Approach

FCA ITALY S.p.A.-Andrea Alessandro Piovano, Giuseppe Scantamburlo, Massimo Quaglino, Matteo Gautero
  • Technical Paper
  • 2020-37-0032
To be published on 2020-06-23 by SAE International in United States
The ongoing global demand for greater energy efficiency plays an essential role in the vehicle development, especially in case of electric vehicles (EVs). The thermal management of the full vehicle is becoming increasingly important, since the Heating, Ventilation, and Air Conditioning (HVAC) system has a significant impact on the EV range. Therefore the EV design requires new guidelines for thermal management optimization. In this paper, an advanced method is proposed to identify the most influential cabin design factors which affect the cabin thermal behavior during a cool down drive cycle in hot environmental conditions. These parameters could be optimized to reduce the energy consumption and to increase the robustness of the vehicle thermal response. The structured Taguchi’s Design for Six Sigma (DFSS) approach was coupled with CFD-Thermal FE simulations, thanks to increased availability of HPC. The first control factors selected were related to the thermal capacity of panel duct, dashboard, interior door panels and seats. Surface IR emissivity and solar radiation absorptivity of these components were then added to the study. Car glass with absorptive…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Heat Pumps for BEVs: Architectures and Performance Analysis

Centro Ricerche Fiat SCpA-Walter Ferraris, Federica Bettoja, Mauro Casella, Matteo Rostagno, Angela Tancredi
  • Technical Paper
  • 2020-37-0030
To be published on 2020-06-23 by SAE International in United States
Electric vehicles have never been more popular, yet fears around being left stranded by an exhausted battery remain a key reason why some car buyers resist making a purchase. Bigger batteries are not always the solution because of the direct link with higher costs and high impact on weight. A re-engineering of the most energy-consuming auxiliaries is mandatory and the thermal management function is on top of the redesign request list. Heat Pump solution is considered one of the best way to save energy and reduce the impact on vehicle range of heating and cooling function, but the automotive application requires a careful definition of the system features to avoid unjustified growing up of complexity as well as an unneeded system over-sizing. The paper aims to give an overview on the heat pump design best practices through a virtual performance comparison of different lay-out configurations, which have been selected starting from a benchmark analysis crossed with a detailed vehicle segment-oriented functions selection. Control strategies role, costs, and target requirements have been used as drivers for…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Methodology for Monitoring Real-World CO2 Emissions Compliance in Passenger Vehicles

Aristotle University of Thessaloniki-Nikiforos Zacharof, Stylianos Doulgeris, Ioannis Myrsinias, Zisimos Toumasatos, Athanasios Dimaratos, Zissis Samaras
European Commission Joint Research-Georgios Fontaras
  • Technical Paper
  • 2020-37-0034
To be published on 2020-06-23 by SAE International in United States
The road transport CO2 emissions reduction scheme in the European Union foresees mandatory targets for passenger vehicles. However, several studies have shown that there is a divergence between official and real-world values that it could be up to 40% in the NEDC. The introduction of the WLTP was expected to curb this divergence, but it is uncertain whether it can fully address the problem. In order to address this issue, future legislation aims at monitoring on-road fuel consumption and subsequently CO2 emissions by utilizing on-board fuel consumption meters. The current study investigates a monitoring approach that obtains and normalizes on-road vehicle operation data and estimate CO2 emissions through vehicle simulation. The first step is to create the vehicle’s engine fuel consumption map, based on laboratory vehicle measurements in order to use it as reference data. Subsequently, a methodology is developed to produce the vehicle’s engine map from signals retrieved through the OBD port in order to emulate data availability under a monitoring scheme. The methodology to derive the vehicle’s engine fuel consumption map includes an…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Study of the Maximum Impact on Engine Efficiency When Insulating the Engine Exhaust Manifold and Ports During Steady and Transient Conditions

Universitat Politècnica de València-Alberto Broatch, Pablo Olmeda, Jaime Martin, Amin Dreif
  • Technical Paper
  • 2020-37-0002
To be published on 2020-06-23 by SAE International in United States
In the present work, a study about the impact on engine performance, fuel consumption and turbine inlet and outlet temperatures adding thermal insulation to the exhaust ports, manifold and pipes before the turbocharger of a 1.6L Diesel engine is presented. First, a 0D/1D model of the engine was developed and thoroughly validated by means of an extensive testing campaign. The validation was performed by means of steady state or transient running conditions and in two different room temperatures: 20ºC and -7ºC d. Once the validation was complete, in order to quantify the significance of adding thermal isolations, the simulations were performed setting the exhaust air path before the turbine as adiabatic. This is evaluated the maximum gain of the technology. Results showed that the thermal insulation proved to have a great potential in regard to T4 increase since this would reduce the warm up time of the aftertreatment systems. However, its impact on engine efficiency was limited in both steady and transient conditions.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Novel Option for Direct Waste Heat Recovery From Exhaust Gases of Internal Combustion Engines

Universita degli Studi dell Aquila-Davide Di Battista, Roberto Cipollone PhD, Roberto Carapellucci PhD
  • Technical Paper
  • 2020-37-0004
To be published on 2020-06-23 by SAE International in United States
Among the different opportunities to save fuel and reduce Co2 emissions from internal combustion engines, great attention has been done on the waste heat recovery: the energy wasted is, in fact, almost two thirds of the energy input and even a partial recovery into mechanical energy is really promising . Usually, thermal energy recovery has been referred to a direct heat recovery (furtherly expanding the gases expelled by the engine thanks to their high pressure and temperature) or an indirect one (using the thermal energy of the exhaust gases – or of any other thermal streams discharged into the atmosphere – as upper source of a conversion power unit which favour a thermodynamic cycle of a working fluid ). Limiting the attention to the exhaust gases, a novel opportunity can be represented by directly exploiting the residual pressure and temperature of the flue gases through an Inverted Brayton cycle (IBC), in which the gases are expanded at a pressure below the environmental one, cooled down and then recompressed to the environmental pressure. Considering the thermodynamic…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study of Friction Reduction Potential in Light- Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil

General Motors-Salvatore Mafrici
  • Technical Paper
  • 2020-37-0006
To be published on 2020-06-23 by SAE International in United States
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with more stringent homologation cycles and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystem has been one of the most important topics of modern Diesel engine development. The present paper analyzes the crankshaft potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of crankshaft design itself and oil viscosity characteristics (including new ultra-low-viscosity formulations already discussed in SAE Paper 2019-24-0056). For this purpose, a combination of theoretical and experimental tools have been used to design an extremely lightweight crankshaft and to evaluate the effects of main and conrod bearings dimensioning, clearances and oil viscosity, considering not only the impact from a friction perspective but also from a structural and…