Search
Advanced Search
of the following are true

Results

Items (208,728)
This SAE Standard describes a reference system architecture based on LTE-V2X technology defined in the set of ETSI standards based on 3GPP Release 14. It also describes cross-cutting features unique to LTE-V2X PC5 sidelink (mode 4) that can be used by current and future application standards. The audience for this document includes the developers of applications and application specifications, as well as those interested in LTE-V2X system architecture, testing, and certification
C-V2X Technical Committee
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock
AMS E Carbon and Low Alloy Steels Committee
This specification covers aircraft-quality, low-alloy steel in the form of round, seamless tubing
AMS E Carbon and Low Alloy Steels Committee
This specification covers the requirements for producing a zinc phosphate coating on ferrous alloys and the properties of the coating
AMS B Finishes Processes and Fluids Committee
This SAE Aerospace Information Report (AIR) provides guidance on using environmental, electrochemical, and electrical resistance measurements to monitor environment spectra and corrosivity of service environments, focusing on parameters of interest, existing measurement platforms, deployment requirements, and data processing techniques. The sensors and monitoring systems provide discrete time-based records of (1) environmental parameters such as temperature, humidity, and contaminants; (2) measures of alloy corrosion of the sensor; and (3) protective coating performance of the sensor. These systems provide measurements of environmental parameters, sensor material corrosion rate, and sensor coating condition for use in assessing the risk of atmospheric corrosion of a structure. Time-based records of environment spectra and corrosivity can help determine the likelihood of corrosion to assess the risk of corrosion damage of the host structure for managed assets and aid in establishing
HM-1 Integrated Vehicle Health Management Committee
The objective of this document is to define basic terms and definitions and to provide general guidance for M&S of aircraft EPS
AE-7M Aerospace Model Based Engineering
This SAE Aerospace Recommended Practice (ARP) lists the lamps in Table 1 that are recommended for the type of service indicated. This list is not intended as a catalog and does not include many types that are now in use. This specification is not applicable to Solid State Lighting Lamp Assemblies (Based LED lamps). It does, however, reflect current practice
A-20A Crew Station Lighting
This SAE Aerospace Recommended Practice (ARP) is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances
AGE-3 Aircraft Ground Support Equipment Committee
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers
A-6A3 Flight Control and Vehicle Management Systems Cmt
This SAE Aerospace Information Report (AIR) addresses many of the significant issues associated with effects of inlet total-pressure distortion on turbine-engine performance and stability. It provides a review of the development of techniques used to assess engine stability margins in the presence of inlet total-pressure distortion. Specific performance and stability issues that are covered by this document include total-pressure recovery and turbulence effects and steady and dynamic inlet total-pressure distortion
S-16 Turbine Engine Inlet Flow Distortion Committee
This procedure provides methods to determine the appropriate inertia values for all passenger cars and light trucks up to 4540 kg of GVWR. For the same vehicle application and axle (front or rear), different tests sections or brake applications may use different inertia values to reflect the duty-cycle and loading conditions indicated on the specific test
Brake Dynamometer Standards Committee
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a ABS - Antilock Brake Systems b TCS - Traction Control Systems c ESC - Electronic Stability Control The document is technical in nature and attempts to remain neutral regarding unique features that individual system or vehicle manufacturers may provide
null, null
This SAE Aerospace Information Report (AIR) focuses on opportunities, challenges, and requirements in use of blockchain for Unmanned Aircraft Systems (UAS) operating at and below 400 feet above ground level (AGL) for commercial use. UAS stakeholders like original equipment manufacturers (OEMs), suppliers, operators, owners, regulators, and maintenance repair and overhaul (MRO) providers face many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain—defined as a distributed ledger technology that includes enterprise blockchain—can help address some of these challenges. Blockchain technology is evolving and also poses certain concerns in adoption. This AIR provides information on the current UAS challenges and how these challenges can be addressed by deploying blockchain technology along with identified areas of concern when using this technology. The scope of this AIR includes elicitation of key requirements for blockchain in UAS across
G-31 Digital Transactions for Aerospace
The processes addressed in this Aerospace Information Report (AIR) apply to the acquisition and validation of dynamic total-pressure and distortion data from CFD models simulating turbulent flows in inlets. The results of these processes can be used in the formation of an inlet-flow-distortion methodology that addresses turbine-engine operability assessments
S-16 Turbine Engine Inlet Flow Distortion Committee
The turbine-engine-inlet flow distortion descriptors summarized in this document apply to the effects of inlet total-pressure, planar-wave, and total-temperature distortions. Guidelines on stability margin, destabilizing influences, types and purposes of inlet data, AIP definition, and data acquisition and handling are summarized from AIR5866, AIR5867, ARP1420, and AIR1419. The degree to which these recommendations are applied to a specific program should be consistent with the complexity of the inlet/engine integration. Total-pressure distortion is often the predominant destabilizing element that is encountered and is often the only type of distortion to be considered, i.e, not all types of distortion need to be considered for all vehicles
S-16 Turbine Engine Inlet Flow Distortion Committee
This document is not a standard, it is a candidate for a standard being submitted to SAE for their consideration as a comment to SAE J2735. The term SAE J2735 SE candidate is used within this document to refer to this submission. This document specifies dialogs, messages, and the data frames and data elements that make up the messages specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC"), communications systems. Although the scope of this Standard is focused on DSRC, these dialogs, messages, data frames and data elements have been designed, to the extent possible, to be of use for applications that may be deployed in conjunction with other wireless communications technologies. This standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the
V2X Communications Steering Committee
This SAE Standard provides the minimum requirements for high-power, two-conductor jumper cable plug and receptacle for truck-trailer jumper cable systems. It includes the test procedures, design, and performance requirements. This document covers receptacles rated 12 VDC nominal and at more than 30 A (amperes) up to and including 150 A, and is intended for a single circuit with one power conductor and one common return conductor. Single-conductor high-current connectors are not recommended for future designs because of inadequate ground return through fifth wheel/king pin. Cable size selection is to be made by the vehicle OEM for specific applications and the specific voltage drop requirements of those applications. This SAE Standard covers two variants of high-power two-conductor connections: a heavy duty version, with horizontally aligned pins, typically for lift-gate battery charging; and a medium duty version, with vertically aligned pins, typically for loads such as power
Truck and Bus Electrical Systems Committee
This SAE Document specifies DSRC interface requirements for V2V Safety Awareness applications, including detailed Systems Engineering documentation (needs and requirements mapped to appropriate message exchanges). These applications include: Emergency Vehicle Alert, Roadside Alert, and Safety Awareness Alerts for Objects and Adverse Road Conditions. This document extends the V2V Communications capabilities defined in J2945/1 to support these applications, and the National ITS Architecture. The purpose of this SAE Document is to enable interoperability for V2V Safety Awareness communications
V2X Vehicular Applications Technical Committee
This SAE Standard provides measurement methods to determine HUD optical performance in typical automotive ambient lighting conditions. It covers indoor measurements with simulated outdoor lighting for the measurement of HUD virtual images. HUD types addressed by this standard includes w-HUD (windshield HUD) and c-HUD (combiner HUD) with references to Augmented Reality (AR) HUD as needed. It is not the scope of this document to set threshold values for automotive compliance; however, some recommended values are presented for reference
Vehicular Flat Panel Display Standards Committee
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance. For definitions of
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Information Report (AIR) provides a comprehensive overview of primary water content measurement instrumentation, for both facility-based icing research and in-flight icing research, over the range of commonly used aircraft certification icing envelopes. It includes information on the theory of operation of the instruments, system errors and limitations, and practical considerations when using them for cloud characterization. This document does not address other icing cloud measurements of interest, such as particle sizing, or measurement of phenomena such as snow, sleet, or hail
AC-9C Aircraft Icing Technology Committee
This SAE Aerospace Recommended Practice (ARP) provides insights on how to perform a Cost Benefit Analysis (CBA) to determine the Return on Investment (ROI) that would result from implementing a blockchain solution to a new or an existing business process. The word “blockchain” refers to a method of documenting when data transactions occur using a distributed ledger with desired immutable qualities. The scope of the current document is on enterprise blockchain which gives the benefit of standardized cryptography, legal enforceability and regulatory compliance. The document analyzes the complexity involved with this technology, lists some of the different approaches that can be used for conducting a CBA, and differentiates its analysis depending on whether the application uses a public or a private distributed network. This document is intended for people who do not have a deep technical understanding or familiarity with blockchain solutions to qualify and quantify its economic benefits
G-31 Digital Transactions for Aerospace
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive. Other use cases that require hardware protected security environment-based access control may be used by each manufacturer
Vehicle Electrical System Security Committee
This SAE Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) and plug-in hybrid-electric vehicles (PHEVs) designed for public roads. This recommended practice provides instructions for measuring and calculating the exhaust emissions and fuel economy of such vehicles over the following standard test cycles: the Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy Driving Schedule (HFEDS), the US06 Driving Schedule (US06), the SC03 Driving Schedule (SC03), and the cold-start Federal Test Procedure (cold FTP), which is based on the UDDS. However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester. The
Light Duty Vehicle Performance and Economy Measure Committee
This standard provides the framework for developing a set of requirements for an avionics data bus network. This standard is intended to provide system-level considerations for the development of such a network, which may include a mix of standard data buses and private data buses
Airlines Electronic Engineering Committee
This document specifies the minimum recommendations for Blind Spot Monitoring System (BSMS) operational characteristics and elements of the user interface. A visual BSMS indicator is recommended. BSMS detects and conveys to the driver via a visual indicator the presence of a target (e.g., a vehicle), adjacent to the subject vehicle in the “traditional” Adjacent Blind Spot Zone (ABSZ). The BSMS is not intended to replace the need for interior and exterior rear-view mirrors or to reduce mirror size. BSMS is only intended as a supplement to these mirrors and will not take any automatic vehicle control action to prevent possible collisions. While the BSMS will assist drivers in detecting the presence of vehicles in their ABSZ, the absence of a visual indicator will not guarantee that the driver can safely make a lane change maneuver (e.g., vehicles may be approaching rapidly outside the ABSZ area). This document applies to original equipment and aftermarket BSMS systems for passenger
Advanced Driver Assistance Systems (ADAS) Committee
This recommended practice describes a process for testing the comprehension of static (i.e., fixed or non-dynamic) symbols for all ground vehicles, for both OEM and aftermarket products. With advancing display technology, it is now possible to display dynamic symbols (e.g., a spinning beach ball to show that a process is ongoing, or a diagram showing energy distribution in hybrid vehicles). Such graphics are outside of the scope of this recommended practice, though extensions of this process may be useful for testing them. However, several symbols which occupy the same space on a display may change state without movement (e.g. play/pause button); these are within the scope of this recommended practice. The process described in this recommended practice includes criteria that are used to identify how well the perceived meaning matches the intended meaning for a representative sample of drivers. The data from this process are analyzed to determine the drivers’ comprehension of the symbol
Driver Vehicle Interface (DVI) Committee
This specification covers a neopentyl polyol ester fluid
AMS CE Elastomers Committee
This specification covers a Perfluorocarbon (FFKM) rubber in the form of molded rings, compression seals, o-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications
AMS CE Elastomers Committee
This specification covers a silicone (MQ/VMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, O-ring cord, and molded in place gaskets for aeronautical and aerospace applications without complete consideration of the end use prior to the selection of this material
AMS CE Elastomers Committee
This specification covers a butadiene-acrylonitrile (NBR) rubber in the form of molded rings, compression seals, o-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications
AMS CE Elastomers Committee
This specification covers two classes (durometers) of tetrafluoroethylene/propylene rubber (FEPM) in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7255 or AMS7256 specification, as appropriate
AMS CE Elastomers Committee
This specification and its associated detail specifications cover phosphonitrilic fluoroelastomers (FZ) in the form of molded rings
AMS CE Elastomers Committee
This specification covers a tetrafluoroethylene/propylene rubber (FEPM) in the form of molded rings
AMS CE Elastomers Committee
This specification covers the requirements of composite blankets suitable for acoustical and thermal insulation of the walls of aircraft compartments within the temperature range of -65°F to +175°F (-54°C to +80°C
AMS CE Elastomers Committee
This specification covers a nitrile (NBR) rubber in the form of sheet, strip, tubing, extrusions, and molded shapes
AMS CE Elastomers Committee
This specification covers a fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, O-ring cord, and molded in place gaskets for aeronautical and aerospace applications without complete consideration of the end use prior to the selection of this material
AMS CE Elastomers Committee
SAE J1698-1A creates an appendix to SAE J1698-1. The appendix contains EDR Record parameters and definitions related to light duty passenger vehicle pedestrian protection systems
Event Data Recorder Committee
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of selectively cooled exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of nitrogen oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document
Cooling Systems Standards Committee
This SAE Recommended Practice identifies and defines terms specifically related to truck and bus braking systems including Antilock Brake Systems (ABS) and Electronically Controlled Braking Systems (ECBS
Truck and Bus Brake Systems Committee
This glossary of tire military/industry represents the latest state-of-the-art terms and definitions for military use. This SAE Recommended Practice shall remain open for comments from the reader and shall also be reviewed and updated periodically. Many similar terms and definitions were reviewed from which the ones best applied to military use were selected. It is the purpose of this task force to provide technical definitions in present day use
Truck and Bus Tire Committee
Connected vehicles can provide data from multiple sensors that monitor both the vehicle and the environment through which the vehicle is passing. The data, when shared, can be used to enhance and optimize transportation operations and management—specifically, traffic flow and infrastructure maintenance. This document describes an interface between vehicle and infrastructure for collecting vehicle/probe data. That data may represent a single point in time or may be accumulated over defined periods of time or distance, or may be triggered based on circumstance. The purpose of this document is to define an interoperable means of collecting the vehicle/probe data in support of the use cases defined herein. There are many additional use cases that may be realized based on the interface defined in this document. Note that vehicle diagnostics are not included within the scope of this document, but diagnostics-related features may be added to probe data in a future supplemental document
Infrastructure Applications Technical Committee
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal emission test procedure (FTP) using the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedure. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system’s performance and not on
Light Duty Vehicle Performance and Economy Measure Committee
The design and location of rear-viewing mirrors or systems, and the presentation of the rear view to the driver can best be achieved if the designer and the engineer have adequate references available on the physiological functions of head and eye movements and on the perceptual capabilities of the human visual system. The following information and charts are provided for this purpose. For more complete information of the relationship of vision to forward vision, see SAE SP-279
Driver Vision Standards Committee
Items per page:
1 – 50 of 208728