Your Selections

Liu, Yang
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Research on Topology Analysis Method of Static Magnetic Network Model of New High Speed Electromagnetic Actuator

Changsha University of Science and Technology-Peng Liu
Harbin Engineering University-Yunpeng Wei, Liyun Fan, Yun Bai, Yang Liu
  • Technical Paper
  • 2020-01-0202
To be published on 2020-04-14 by SAE International in United States
In this paper, based on the design of composite magnetic circuit, a new type of high-speed electromagnetic actuator (NHSEMA) with permanent magnetic was invented, which has the characteristics of low power consumption, strong electromagnetic force and high response. Those characteristics were systematically and deeply studied by means of theoretical analysis, numerical simulation and experiment. The magnetic network topology method was proposed to subdivide the structure of the NHSEMA, and construct the static characteristics simulation model of NHSEMA, with taking into account the magnetic flux leakage and edge flux of the system. The accuracy of simulation model of the NHSEMA was verified by set up the test platform. The error is about 3.1%, which proves that the model can achieve both calculation accuracy and speed. The static electromagnetic characteristics, energy conversion and magnetic flux distribution of NHSEMA were studied by using magnetic network topology simulation model. The research shows that compared with the traditional high-speed electromagnetic actuator (THSEMA), the electromagnetic force of NHSEMA is increased by about 30% under the same current driving. Meanwhile, the Joule…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

BorgWarner Turbo Systems-Jürgen Werner
Ricardo UK Ltd-Joshua Dalby
Published 2019-09-09 by SAE International in United States
Reducing emissions from light duty vehicles is critical to meet current and future air quality targets. With more focus on real world emissions from light-duty vehicles, the interactions between engine and exhaust gas aftertreatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel air-fuel ratio).In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented. A transient 3D CFD/FEM (Computation Fluid Dynamics/Finite Element Modelling) simulation is conducted and predicts that external heat losses will be reduced by 70% compared to a standard turbocharger, i.e. non-insulated turbocharger. A 1D modelling methodology…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hybrid Powertrain Technology Assessment through an Integrated Simulation Approach

Continental-Naroa Zaldua-Moreno, Lorenzo Pace
Ford Werke GmbH-Harald Stoffels
Published 2019-09-09 by SAE International in United States
Global automotive fuel economy and emissions pressures mean that 48 V hybridisation will become a significant presence in the passenger car market. The complexity of powertrain solutions is increasing in order to further improve fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. The results presented in this paper are from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48 V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module. The novel simulation approach undertaken uses an integrated toolchain capturing thermal, electrical and mechanical energy usage across all powertrain sub-systems. Through integrating 0-D and 1-D sub-models into a single modelling environment, the operating strategy of the technologies can be optimised while capturing the synergies that exist between them. This approach enables improved and more informed cost/benefit ratios for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Study of Atmospheric Icing Process on Power Transmission Line

Iowa State University-Ramsankar Veerakumar, Linyue Gao, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
Atmospheric icing poses a major threat to power transmission lines in cold regions. In the present study, an experimental investigation was conducted to examine the atmospheric icing process on high-voltage power transmission lines and characterize the effects of the ice accretion on the aerodynamic forces acting on the transmission lines. The experimental study was conducted in the Icing Research Tunnel available at Iowa State University (ISU-IRT). A cylinder model with the same diameter of commonly-used high-voltage power transmission lines (i.e., D = 29mm) is subjected to a typical glaze icing condition at an incoming wind speed of 20 m/s, a liquid water content (LWC) of 2.0 g/m3 and an ambient temperature of -5 0C. A high-resolution 3D scanner was used in the present study to extract the 3D shapes of the ice structures accreted over surface of the cylindrical test model as a function of the ice accretion time. While the aerodynamic drag force acting on the test model was measured by using a force transducer during the dynamic ice accreting process, a high-resolution Particle…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation

Iowa State University-Linyue Gao, Liqun Ma, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
The electro-thermal method is most commonly used for wind turbine anti-/de-icing. The upmost drawback of such systems is the high power consumption. In the present study, we proposed to use a durable slippery liquid-infused porous surface (SLIPS) to effectively reduce the power requirement of the heating element during the anti-/de-icing process. The explorative study was conducted in the Icing Research Tunnel at Iowa State University (ISU-IRT) with a DU91-W2-250 wind turbine blade model exposed under severe icing conditions. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion process, an infrared (IR) thermal imaging system was also utilized to achieve the simultaneous surface temperature measurements over the test model. In comparison to the traditional electrical heating strategies to brutally heat massive area of entire turbine blades, a novel heating-coating hybrid strategy, i.e., combining a leading-edge (LE) heating element to cover the first 30% of the chord length (C) along with using SLIPS to coat entire blade surface, was found to be able to keep the entire blade surface completely…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Parametric Study on the Thermodynamic Characteristics of DBD Plasma Actuation and Its Potential for Wind Turbine Icing Mitigation

Iowa State University-Cem Kolbakir, Linyue Gao, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
Wind turbine icing represents the most significant threat to the integrity of wind turbines in cold weather. Ice formation on wind turbine blades was found to cause significant aerodynamic performance degradation, resulting in a substantial drop in energy production. Recently developed Dielectric barrier discharge (DBD) plasma-based anti-/de-icing systems showed very promising effects for aircraft icing mitigation. In this present study, DBD plasma-based anti-/de-icing systems were employed for wind turbine icing mitigation. First, a comprehensive parametric study is conducted to investigate the effects of various DBD plasma actuation parameters on its thermodynamic characteristics. An infrared (IR) thermal imaging system is used to quantitatively measure the temperature distributions over the test plate under various test conditions. DBD plasma actuators are embedded over the surface of a DU91-W2-250 wind turbine blade model, and a series of experiments were conducted by using the Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT) to evaluate the anti-/de-icing performance of the system for wind turbine icing mitigation. Dynamic anti-icing process was recorded by a high-speed imaging system, and an IR…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Explorative Study to Use Super-Hydrophilic/Super-Hydrophobic Hybrid Surfaces for Aircraft Icing Mitigation

Iowa State University-Haiyang Hu, Hui Hu, Yang Liu
Published 2019-06-10 by SAE International in United States
An explorative study was performed to demonstrate the feasibility of using a novel hybrid anti-/de-icing strategy for aircraft icing mitigation. The hybrid method was developed by combining the electro-thermal heating mechanism and specialized surfaces/coatings with different wettabilities. While an electrical film heater was utilized to provide thermal energy around the leading edge of a NACA0012 airfoil model, two different coating strategies, (i.e., (a). Superhydrophobic coating covering the entire airfoil surface to increase droplets bounce-off and accelerate surface water runback vs. (b). super-hydrophilic coating at the leading edge to increase evaporation area + superhydrophobic coating in downstream to prevent runback refreezing) were proposed and evaluated aiming at maximizing the anti-/de-icing efficiency of the hybrid method. While a series of experiments were conducted to examine the dynamics of droplet impinging onto the different surfaces (i.e., superhydrophobic vs. super-hydrophilic), a comprehensive experimental study was carried out in the Icing Research Tunnel at Iowa State University (i.e., ISU-IRT) to evaluate the anti-/de-icing performance of the hybrid method with the different coating strategies. It was found that, while both of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Study on the Effects of the Layout of DBD Plasma Actuators on Its Anti-/De-Icing Performance for Aircraft Icing Mitigation

Iowa State University-Cem Kolbakir, Yang Liu, Haiyang Hu, Hui Hu
Published 2019-06-10 by SAE International in United States
Recently developed dielectric barrier discharge (DBD) plasma-based anti-icing systems have shown great potential for aircraft icing mitigation. In the present study, the ice accretion experiments were performed on to evaluate the effects of different layouts of DBD plasma actuators on their anti-/de-icing performances for aircraft icing mitigations. An array of DBD plasma actuators were designed and embedded on the surface of a NACA0012 airfoil/wing model in different layout configurations (i.e., different alignment directions of the plasm actuators (e.g., spanwise vs. streamwise), width of the exposed electrodes and the gap between the electrodes) for the experimental study. The experimental study was carried out in the Icing Research Tunnel available at Iowa State University (i.e., ISUIRT). While the dynamic anti-icing operation is recorded by using a high-resolution imaging system, a high-speed Infrared (IR) thermal imaging camera is used to quantitatively map the temperature distributions over the surface of the airfoil model during the anti-/deicing processes. Results show that, heat dissipation mechanism of the plasma actuator array in either streamwise and spanwise configurations differ one from another noticeably.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Study on a Hot-Air-Based Anti-/De-Icing System for the Icing Protection of Aero-Engine Inlet Guide Vanes

Iowa State University-Linkai Li, Linchuan Tian, Yang Liu, Hui Hu
Pratt & Whitney-Isaac Hogate
Published 2019-06-10 by SAE International in United States
In the present study, an experimental investigation was conducted to characterize a hot-air-based anti-/de-icing system for the icing protection of aero-engine inlet guide vanes(IGVs). The experimental study was conducted in a unique icing research tunnel available at Iowa State University (i.e., ISU-IRT). A hollowed IGV model embedded with U-shaped hot-air flowing conduit was designed and manufactured for the experimental investigations. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion or anti-/de-icing process over the surface of the IGV model for the test cases without and with the hot-air supply system being turned on, the corresponding surface temperature distributions on the IGV model were measured quantitatively by using a row of embedded thermocouples. In addition to investigating the characteristics of the convective heat transfer over the surface of the heated IGV model, a comprehensive parametric study was also conducted to evaluate the effects of the operation parameters of the hot-air-based anti-/de-icing system on its performance for IGV icing protection. The acquired ice accretion or anti-de-icing images were coordinated with…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Study to Evaluate Hydro-/Ice-Phobic Coatings for Icing Mitigation over Rotating Aero-engine Fan Blades

Iowa State University-Linchuan Tian, Yang Liu, Linkai Li, Hui Hu
Published 2019-06-10 by SAE International in United States
Ice accretion on aero-engines, especially on the fan blades, is the very hazardous icing incident due to the potential performance degradation of jet-engines. In the present study, an experimental investigation was conducted to examine the performance of ice-phobic coatings for jet-engine fan icing mitigation. The experimental study was performed in the unique Icing Research Tunnel at Iowa State University (ISU-IRT) with a scaled engine fan model operated under wet glaze and dry rime ice conditions. To evaluate the effects of anti-icing coatings and to acquire the important details of ice accretion and shedding process on fan blade surfaces, a “phase-locked” imaging technique was applied with a high-resolution imaging system. The power input required to drive the engine fan model rotating at a constant prescribed speed was also measured during the ice accretion experiment. It was found that both super-hydrophobic surface (SHS) and ice-phobic coating have its advantage in engine anti-icing. SHS facilitated the blades surface with much less ice, under both glaze icing and rime icing conditions, while ice-phobic coating prevents the large ice chunk…
This content contains downloadable datasets
Annotation ability available