Your Selections

Jain, Rahul
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Innovative Approach of Wedge Washer to Avoid Bolt Loosening in Automotive Applications

SAE International Journal of Passenger Cars - Mechanical Systems

VE Commercial Vehicles Ltd.-Suresh Kumar Kandreegula, Rahul Jain, Shivdayal Prasad, Rahul Machiya, Avinash Mandyam
  • Journal Article
  • 06-11-01-0004
Published 2017-10-08 by SAE International in United States
Automotive vehicle includes various systems like engine, transmission, exhaust, air intake, cooling and many more systems. No doubt the performance of individual system depends upon their core design. But for performance, the system needs to be fastened properly. In automotive, most of the joints used fasteners which helps in serviceability of the components. There are more than thousands of fasteners used in the vehicle. At various locations, we found issue of bolt loosening and because of this design intent performance has not met by the system. During product development of ECS (Engine cooling system), various issues reported to loosening the bolt. The pre-mature failure of bolt loosening, increases the interest in young engineers for understanding the behavior of fastener in vehicle running conditions. This paper focuses on the design of wedge shape of washer to avoid bolt loosening. Further, the paper is reinforced with FEA simulation for understanding the behavior of the bolt loosening. The joint in ECS is tested experimentally and FE simulated using simulation tools with various methods under different vibration conditions like…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

FEM based Approach for Design and Development of Exhaust System Flex Connector and Experimentally Validated

VE Commercial Vehicles Ltd.-Suresh Kumar Kandreegula, Sayak Mukherjee, Rahul Jain, Shivdayal Prasad, Kamal Rohilla
Published 2017-03-28 by SAE International in United States
Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing or selecting the right design.It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.Instead of conventional approach, Finite Element Method has been adopted to align the project time plan (design and development time), to predict the static and dynamic stress levels along with the vertical, lateral and torsional frequencies for defining the design parameters (stiffness) of the flex connector suitable for the operating environment. Then, this flex connector has been tested under VECV standard durability…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design Optimization of Engine Mounts for Commercial Vehicle Application to Avoid Failures

IIT Roorkee-Arpit Mathur
VE-Adithya Legala
Published 2017-01-10 by SAE International in United States
The Mounting system of component plays a major role in determining the structural durability, compatibility and synchronization of the systems with respect to each other. The major function of Engine mounts is to isolate the engine from the chassis and to align the power-train system of vehicle according to needs. Here we exclusively deal with the failure case of a Heavy duty commercial vehicle Engine Mounts and its optimization. We do formulate a theoretical calculation for the estimation of engine loads, Center of Gravity (C.G) and characteristics of existing engine mount followed by a failure root cause analysis based on design and transmissibility parameters. This is then correlated with data from Computed Aided Engineering and Matlab for analysis of the existing model which is compared to the experimental transmissibility from Road load data Acquisition (RLDA). This is to validate the conditions and propose optimizations to reduce critical failures.
Annotation ability available