Your Selections

Henderson, Robert
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

Southwest Research Institute-Robert Henderson, Ryan Hartley, Cary Henry
  • Technical Paper
  • 2020-01-0371
To be published on 2020-04-14 by SAE International in United States
The Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in an NO2:NOX ratio of < 5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2. Presented within this manuscript is a method for precise control of the NO2:NOX ratio within the ECTO-Lab exhaust stream by using nitric acid as the NOX precursor molecule in lieu of nitromethane. While decomposition of nitromethane generates NO as the dominate component of the NOX mixture, nitric acid decomposition produces…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fuel Reforming and Catalyst Deactivation Investigated in Real Exhaust Environment

Raphael Gukelberger
Bartley Consulting LLC-Gordon Bartley
Published 2019-04-02 by SAE International in United States
Increased in-cylinder hydrogen levels have been shown to improve burn durations, combustion stability, HC emissions and knock resistance which can directly translate into enhanced engine efficiency. External fuel reformation can also be used to increase the hydrogen yield. During the High-Efficiency, Dilute Gasoline Engine (HEDGE) consortium at Southwest Research Institute (SwRI), the potential of increased hydrogen production in a dedicated-exhaust gas recirculation (D-EGR) engine was evaluated exploiting the water gas shift (WGS) and steam reformation (SR) reactions. It was found that neither approach could produce sustained hydrogen enrichment in a real exhaust environment, even while utilizing a lean-rich switching regeneration strategy. Platinum group metal (PGM) and Ni WGS catalysts were tested with a focus on hydrogen production and catalyst durability. Although 4% additional hydrogen was initially produced in the EGR stream, leading to improvements in the coefficient of variation (CoV) and brake specific fuel consumption (BSFC), catalyst activity decreased within a few hours regardless of the regeneration strategy employed. With an SR catalyst, a small amount of hydrogen was produced in the EGR stream via…
This content contains downloadable datasets
Annotation ability available